【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)在坐標(biāo)軸上,是的中點(diǎn),四邊形是矩形,四邊形是正方形,若點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為( )
A.B.C.D.
【答案】D
【解析】
過點(diǎn)D作DH⊥y軸,交y軸于H,根據(jù)矩形和正方形的性質(zhì)可得∠EOF=∠BCF=∠HDE=90°,EF=BF=ED,BC=OA,根據(jù)角的和差故關(guān)系可得∠FBC=∠OFE=∠HED,∠BFC=∠OEF=∠HDE,利用ASA可證明△OFE≌△CBF≌△HDE,可得FC=OE=HD,BC=OF=HE,由點(diǎn)E為OA中點(diǎn)可得OF=2FC,即可求出FC的長,進(jìn)而可得HE的長,即可求出OH的長,即可得點(diǎn)D坐標(biāo).
過點(diǎn)D作DH⊥y軸,交y軸于H,
∵四邊形是矩形,四邊形是正方形,
∴∠EOF=∠BCF=∠HDE=∠EFB=90°,EF=BF=ED,BC=OA,
∴∠OFE+∠BFC=90°,∠FBC+∠BFC=90°,
∴∠OFE=∠FBC,
同理:∠OEF=∠BFC,
在△OEF和△CFB中,,
∴BC=OF=OA,FC=OE,
∵點(diǎn)E為OA中點(diǎn),
∴OA=2OE,
∴OF=2OE,
∴OC=3OE,
∵點(diǎn)C坐標(biāo)為(3,0),
∴OC=3,
∴OE=1,OF=2,
同理:△HDE≌△OEF,
∴HD=OE=1,HE=OF=2,
∴OH=OE+HE=3,
∴點(diǎn)D坐標(biāo)為(1,3),
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(1,4),B(4,n)兩點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)求一次函數(shù)的解析式;
(3)點(diǎn)P是x軸上的一動(dòng)點(diǎn),試確定點(diǎn)P并求出它的坐標(biāo),使PA+PB最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C分別在x軸和y軸的正半軸上,反比例函數(shù)y= 在第一象限的圖象分別交矩形OABC的邊AB、BC邊點(diǎn)于E、F,已知BE=2AE,四邊形的OEBF的面積等于12.
(1)求k的值;
(2)若射線OE對應(yīng)的函數(shù)關(guān)系式是y=,求線段EF的長;
(3)在(2)的條件下,連結(jié)AC,試證明:EF∥AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀如下材料,然后解答后面的問題:已知直線l1:y=﹣2x﹣2和直線l2:y=﹣2x+4如圖所示,可以看到直線l1∥l2,且直線l2可以由直線l1向上平移6個(gè)長度單位得到,直線l2可以由直線l1向右平移3個(gè)長度單位得到.這樣,求直線l2的函數(shù)表達(dá)式,可以由直線l1的函數(shù)表達(dá)式直接得到.即:如果將直線l1向上平移6的長度單位后得到l2,得l2的函數(shù)表達(dá)式為:y=﹣2x﹣2+6,即y=﹣2x+4;如果將直線l1向右平移3的長度單位后得到得l2,l2的函數(shù)表達(dá)式為:y=﹣2(x﹣3)﹣2,即y=﹣2x+4.
(1)將直線y=2x﹣3向上平移2個(gè)長度單位后所得的直線的函數(shù)表達(dá)式是 ;
(2)將直線y=3x+1向右平移m(m>0)兩個(gè)長度單位后所得的直線的函數(shù)表達(dá)式是 ;
(3)已知將直線y=x+1向左平移n(n>0)個(gè)長度單位后得到直線y=x+5,則n= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2﹣4x﹣5與x軸交于A(﹣1,0),B(5,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)P是拋物線上的一個(gè)不與點(diǎn)C重合的一個(gè)動(dòng)點(diǎn),若S△PAB=S△ABC,則點(diǎn)P的坐標(biāo)是_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某種產(chǎn)品的進(jìn)價(jià)為每件40元,現(xiàn)在的售價(jià)為每件60元,每星期可賣出300件.市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每降價(jià)1元,每星期可多賣出20件,由于供貨方的原因銷量不得超過380件,設(shè)這種產(chǎn)品每件降價(jià)x元(x為整數(shù)),每星期的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)該產(chǎn)品銷售價(jià)定為每件多少元時(shí),每星期的銷售利潤最大?最大利潤是多少元?
(3)該產(chǎn)品銷售價(jià)在什么范圍時(shí),每星期的銷售利潤不低于6000元,請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為獎(jiǎng)勵(lì)學(xué)習(xí)之星,準(zhǔn)備在某商店購買A、B兩種文具作為獎(jiǎng)品,已知一件A種文具的價(jià)格比一件B種文具的價(jià)格便宜5元,且用600元買A種文具的件數(shù)是用400元買B種文具的件數(shù)的2倍.
(1)求一件A種文具的價(jià)格;
(2)根據(jù)需要,該校準(zhǔn)備在該商店購買A、B兩種文具共150件.
①求購買A、B兩種文具所需經(jīng)費(fèi)W與購買A種文具的件數(shù)a之間的函數(shù)關(guān)系式;
②若購買A種文具的件數(shù)不多于B種文具件數(shù)的2倍,且計(jì)劃經(jīng)費(fèi)不超過2750元,求有幾種購買方案,并找出經(jīng)費(fèi)最少的方案,及最少需要多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過點(diǎn)C(2,1)分別作x軸、y軸的平行線,交直線y=﹣x+4于B、A兩點(diǎn),若二次函數(shù)y=ax2+bx+c的圖象經(jīng)過坐標(biāo)原點(diǎn)O,且頂點(diǎn)在矩形ADBC內(nèi)(包括邊上),則a的取值范圍是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BE=CF,AB∥DE,添加下列哪個(gè)條件不能證明△ABC≌△DEF的是( )
A. AB=DE B. ∠A=D C. AC=DF D. AC∥DF
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com