【題目】下列說法中,正確的個數(shù)為(  )

①三角形的三條高都在三角形內,且都相交于一點

②三角形的中線都是過三角形的某一個頂點,且平分對邊的直線

③在ABC,,ABC是直角三角形

④一個三角形的兩邊長分別是810,那么它的最短邊的取值范圍是2b18.

A.1B.2C.3D.4

【答案】A

【解析】

根據(jù)三角形的高線、中線、三角形內角和定理、三角形的三邊關系分別分析各個選項即可.

①只有當三角形是銳角三角形時,三條高才在三角形的內部,故此選項錯誤;

②三角形中線是過頂點平分對邊的線段,故此選項錯誤;

③設∠A=x,則∠B=2x,∠C=3x

∵∠A+B+C=180°,∴x+2x+3x=180°,解得:x=30°,∴∠C=3x=90°,故此選項正確;

④一個三角形的兩邊長分別是810,那么它的最短邊的取值范圍是2b8,故此選項錯誤.

故正確的有1個.

故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】對于一個關于的代數(shù)式,若存在一個系數(shù)為正數(shù)關于的單項式,使 的結果是所有系數(shù)均為整數(shù)的整式,則稱單項式為代數(shù)式的“整系單項式” ,例如:

時,由于 ,故的整系單項式;

時,由于 ,故的整系單項式;

時,由于 ,故的整系單項式;

時,由于 ,故的整系單項式;

顯然,當代數(shù)式存在整系單項式時,有無數(shù)個,現(xiàn)把次數(shù)最低,系數(shù)最小的整系單項式記為 ,例如: .

閱讀以上材料并解決下列問題:

.判斷:當 時, 的整系單項式(填“是”或“不是”);

. 時, = ;

.解方程:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠ABC=∠DCB,添加一個條件使△ABC≌△DCB,下列添加的條件不能使△ABC≌△DCB的是( 。

A. A=∠D B. ABDC C. ACDB D. OBOC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一艘在南北航線上的測量船,于A點處測得海島B在點A的南偏東30°方向,繼續(xù)向南航行30海里到達C點時,測得海島BC點的北偏東15°方向,那么海島B離此航線的最近距離是( 。ńY果保留小數(shù)點后兩位)(參考數(shù)據(jù):≈1.732,≈1.414)

A. 4.64海里 B. 5.49海里 C. 6.12海里 D. 6.21海里

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AC平分∠DAB,CEABE,AB=AD+2BE,則下列結論:①AB+AD=2AE;②∠DAB+DCB=180°;③CD=CB;④SACE2SBCE=SADC;其中正確結論的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ΔABC中,AD是高,AE、BF是角平分線,它們相交與點O,∠BAC=50°,∠C=70°,則∠DAC的度數(shù)為__________,∠BOA的度數(shù)為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一塊直角三角板DEF放置在銳角ABC上,使得該三角板的兩條直角邊DE、DF恰好分別經(jīng)過點B、C

1)如圖①,若∠A=40°時,點DABC內,則∠ABC+ACB=   度,∠DBC+DCB=   度,∠ABD+ACD=   度;

2)如圖②,改變直角三角板DEF的位置,使點DABC內,請?zhí)骄俊?/span>ABD+ACD與∠A之間存在怎樣的數(shù)量關系,并驗證你的結論.

3)如圖③,改變直角三角板DEF的位置,使點DABC外,且在AB邊的左側,直接寫出∠ABD、∠ACD、∠A三者之間存在的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖∠BAC=60°,半徑長1的⊙O與∠BAC的兩邊相切,P為⊙O上一動點,以P為圓心,PA長為半徑的⊙P交射線AB、ACD、E兩點,連接DE,則線段DE長度的最大值為(  )

A. 3 B. 6 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A在線段BG上,正方形ABCD和正方形DEFG的面積分別為37,則CDE的面積為_________

查看答案和解析>>

同步練習冊答案