【題目】一艘在南北航線上的測量船,于A點處測得海島B在點A的南偏東30°方向,繼續(xù)向南航行30海里到達(dá)C點時,測得海島BC點的北偏東15°方向,那么海島B離此航線的最近距離是( 。ńY(jié)果保留小數(shù)點后兩位)(參考數(shù)據(jù):≈1.732,≈1.414)

A. 4.64海里 B. 5.49海里 C. 6.12海里 D. 6.21海里

【答案】B

【解析】

根據(jù)題意畫出圖如圖所示:作BD⊥AC,取BE=CE,根據(jù)三角形內(nèi)角和和等腰三角形的性質(zhì)得出BA=BE,AD=DE,設(shè)BD=x,Rt△ABD中,根據(jù)勾股定理得AD=DE=x,AB=BE=CE=2x,由AC=AD+DE+EC=2x+2x=30,解之即可得出答案.

根據(jù)題意畫出圖如圖所示:作BD⊥AC,取BE=CE,

∵AC=30,∠CAB=30°∠ACB=15°,
∴∠ABC=135°,
∵BE=CE,
∴∠ACB=∠EBC=15°,
∴∠ABE=120°,
∵∠CAB=30°
∴BA=BE,AD=DE,
設(shè)BD=x,
Rt△ABD中,
∴AD=DE=x,AB=BE=CE=2x,
∴AC=AD+DE+EC=2x+2x=30,
∴x==≈5.49,
故答案選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,拋物線經(jīng)過點、

的值;

如圖,點與點關(guān)于點對稱,過點的直線交軸于點,交拋物線于另一點.若,求的值;

如圖,在的條件下,點軸上一點,連、分別交拋物線于點、,探究的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC 中,∠A=30°,∠B=90°,AC=8,點 D 在邊 AB, BD=,點 P 是△ABC 邊上的一個動點,若 AP=2PD 時,則 PD的長是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個多邊形的所有內(nèi)角與它的一個外角之和是2018°,求這個外角的度數(shù)和它的邊數(shù)

【答案】38° ; 邊數(shù)13

【解析】試題分析根據(jù)多邊形的內(nèi)角和公式(n-2)180°可知,多邊形的內(nèi)角和是180°的倍數(shù),然后列式求解即可.

試題解析:設(shè)多邊形的邊數(shù)是n,加的外角為α,則

(n-2)180°+α=2018°,

α=2378°-180°n,又0<α<180°,

0<2378°-180°n<180°,

解得: n,

n為正整數(shù),

可得n=13,

此時α=38°滿足條件

這個外角的度數(shù)是38°,它的13邊形

【點睛】本題考查了多邊形的內(nèi)角和公式,利用好多邊形的內(nèi)角和是180°的倍數(shù)是解題的關(guān)鍵.

型】解答
結(jié)束】
22

【題目】已知, (1) ; (2) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+3過點A5m)且與y軸交于點B,把點A向左平移2個單位,再向上平移4個單位,得到點C.過點C且與y2x平行的直線交y軸于點D

1)求直線CD的解析式;

2)直線ABCD交于點E,將直線CD沿EB方向平移,平移到經(jīng)過點B的位置結(jié)束,求直線CD在平移過程中與x軸交點的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ΔABC、ΔCDE都是等邊三角形,AD、BE相交于點O,點M、點N分別是線段AD、BE的中點.

1)證明: AD=BE.2)求∠DOE的角度。(3)證明:ΔMNC是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的個數(shù)為(  )

①三角形的三條高都在三角形內(nèi),且都相交于一點

②三角形的中線都是過三角形的某一個頂點,且平分對邊的直線

③在ABC,,ABC是直角三角形

④一個三角形的兩邊長分別是810,那么它的最短邊的取值范圍是2b18.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在邊長為2的正三角形ABC中,E、FG分別為AB、

AC、BC的中點,點P為線段EF上一個動點,連接BP、GP,則△BPG的周長的最小值是

_ ▲

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD平分∠BAC,AD⊥BD于點D,DE∥ACAB于點E,若AB=8,則DE=_______

查看答案和解析>>

同步練習(xí)冊答案