【題目】對于三個數(shù),用表示這三個數(shù)的中位數(shù),用表示這三個數(shù)中最大數(shù),例如:,.

解決問題:

(1)填空: ,如果,則的取值范圍為 ;

(2)如果,求的值;

(3)如果,求的值.

【答案】(1),;(2)﹣3或0;(3) x=3或﹣3.

【解析】析:(1)根據定義寫出sin45°,cos60°,tan60°的值,確定其中位數(shù);根據max{a,b,c}表示這三個數(shù)中最大數(shù),對于max{3,53x,2x6}=3,可得不等式組:則,可得結論;

(2)根據新定義和已知分情況討論:①2最大時,x+4≤2時,②2是中間的數(shù)時,x+2≤2≤x+4,2最小時,x+2≥2,分別解出即可;

(3)不妨設y1=9,y2=x2,y3=3x2,畫出圖象,根據M{9,x2,3x2}=max{9,x2,3x2},可知:三個函數(shù)的中間的值與最大值相等,即有兩個函數(shù)相交時對應的x的值符合條件,結合圖象可得結論.

1)sin45°=,cos60°=,tan60°=

M{sin45°,cos60°,tan60°}=,

max{3,5﹣3x,2x﹣6}=3,

,

x的取值范圍為:

故答案為:,;

(2)2M{2,x+2,x+4}=max{2,x+2,x+4},

分三種情況:①當x+4≤2時,即x≤﹣2,

原等式變?yōu)椋?/span>2(x+4)=2,x=﹣3,

x+2≤2≤x+4時,即﹣2≤x≤0,

原等式變?yōu)椋?/span>2×2=x+4,x=0,

③當x+2≥2時,即x≥0,

原等式變?yōu)椋?/span>2(x+2)=x+4,x=0,

綜上所述,x的值為﹣30;

(3)不妨設y1=9,y2=x2,y3=3x﹣2,畫出圖象,如圖所示:

結合圖象,不難得出,在圖象中的交點A、B點時,滿足條件且M{9,x2,3x﹣2}=max{9,x2,3x﹣2}=yA=yB

此時x2=9,解得x=3或﹣3.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B兩點在數(shù)軸上,點A表示的數(shù)為–10OB=4OA,點M以每秒2個單位長度的速度從點A開始向左運動,點N以每秒3個單位長度的速度從點B開始向左運動(點M和點N同時出發(fā)).

1)數(shù)軸上點B對應的數(shù)是__________,線段AB的中點C對應的數(shù)是__________

2)經過幾秒,點M、點N到原點的距離相等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點B、E、F、C在一條直線上,AB=DE=10,AC=DF,BE=CF=CE

1)求證:ABDE;

2)求EG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,的頂點在第一象限,點、的坐標分別為、,,直線軸于點,若關于點成中心對稱,則點的坐標為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠B+∠BCD=180°,∠B=∠D.

求證:∠E=∠DFE.

證明:∵∠B+∠BCD=180°( 已知 ),

∴AB∥CD (

∴∠B=_______(

又∵∠B=∠D(已知 ),

∴∠D=_______( )

∴AD∥BE(

∴∠E=∠DFE(

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB=AC,∠BAC=90°,∠1=∠2,CEBE.求證:BD=2CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O為直線AB上一點,F為射線OC上一點,OEAB

1)用量角器和直角三角尺畫∠AOC的平分線OD,畫FGOC,FGAB于點G

2)在(1)的條件下,比較OFOG的大小,并說明理由;

3)在(1)的條件下,若∠BOC40°,求∠AOD與∠DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=AC,點D是射線CB上的一動點(不與點BC重合),以AD為一邊在AD的右側作△ADE,使AD=AE,∠DAE=∠BAC,連接CE

(1)如圖1,當點D在線段CB上,且∠BAC=90°時,那么∠DCE= 度;

(2)設∠BAC= ,∠DCE=

① 如圖2,當點D在線段CB上,∠BAC≠90°時,請你探究之間的數(shù)量關系,并證明你的結論;

② 如圖3,當點D在線段CB的延長線上,∠BAC≠90°時,請將圖3補充完整,并直接寫出此時之間的數(shù)量關系(不需證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在暑期社會實踐活動中,以每千克0.8元的價格從批發(fā)市場購進若干千克西瓜到市場上去銷售,在銷售了40千克西瓜之后,余下的每千克降價0.4元,全部售完.銷售金額與售出西瓜的千克數(shù)之間的關系如圖所示.請你根據圖象提供的信息完成以下問題:

(1)求降價前銷售金額y()與售出西瓜x(千克)之間的函數(shù)關系式.

(2)小明從批發(fā)市場共購進多少千克西瓜?

(3)小明這次賣瓜賺了多少錢?

查看答案和解析>>

同步練習冊答案