【題目】如圖,已知四邊形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,點(diǎn)E為線段AB的中點(diǎn).如果點(diǎn)P在線段BC上以3厘米秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CD上由C點(diǎn)向D點(diǎn)運(yùn)動(dòng).當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為_____厘米/秒時(shí),能夠使△BPE與以C、P、Q三點(diǎn)所構(gòu)成的三角形全等.
【答案】3或
【解析】
分兩種情況討論,依據(jù)全等三角形的對(duì)應(yīng)邊相等,即可得到點(diǎn)Q的運(yùn)動(dòng)速度.
解:設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,則BP=3t,CP=8﹣3t,
∵∠B=∠C,
∴①當(dāng)BE=CP=6,BP=CQ時(shí),△BPE與△CQP全等,
此時(shí),6=8﹣3t,
解得t=,
∴BP=CQ=2,
此時(shí),點(diǎn)Q的運(yùn)動(dòng)速度為2÷=3厘米/秒;
②當(dāng)BE=CQ=6,BP=CP時(shí),△BPE與△CQP全等,
此時(shí),3t=8﹣3t,
解得t=,
∴點(diǎn)Q的運(yùn)動(dòng)速度為6÷=厘米/秒;
故答案為:3或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂足分別為A、B.
求證:①△ADC≌△BCE;
②AD+AB=BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是等邊的外角內(nèi)部的一條射線,點(diǎn)關(guān)于的對(duì)稱點(diǎn)為,連接,,,其中、分別交射線于點(diǎn),.
(1)依題意補(bǔ)全圖形;
(2)若,求的大。ㄓ煤的式子表示);
(3)若,,求的長(zhǎng)度(用,的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲、乙兩地相距90km,A,B兩人沿同一公路從甲地出發(fā)到乙地,A騎摩托車,B騎電動(dòng)車,圖中DE,OC分別表示A,B離開甲地的路程s(km)與時(shí)間t(h)的函數(shù)關(guān)系的圖象,根據(jù)圖象解答下列問(wèn)題.
(1)A比B后出發(fā)幾個(gè)小時(shí)?B的速度是多少?
(2)在B出發(fā)后幾小時(shí),兩人相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線過(guò)點(diǎn),交x軸于A,B兩點(diǎn)點(diǎn)A在點(diǎn)B的左側(cè).
求拋物線的解析式,并寫出頂點(diǎn)M的坐標(biāo);
連接OC,CM,求的值;
若點(diǎn)P在拋物線的對(duì)稱軸上,連接BP,CP,BM,當(dāng)時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線MN與直線PQ垂直相交于O,點(diǎn)A在直線PQ上運(yùn)動(dòng),點(diǎn)B在直線MN上運(yùn)動(dòng).
(1)如圖1,已知AE、BE分別是∠BAO和∠ABO角的平分線,點(diǎn)A、B在運(yùn)動(dòng)的過(guò)程中,∠AEB的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明變化的情況;若不發(fā)生變化,試求出∠AEB的大。
(2)如圖2,已知AB不平行CD,AD、BC分別是∠BAP和∠ABM的角平分線,又DE、CE分別是∠ADC和∠BCD的角平分線,點(diǎn)A、B在運(yùn)動(dòng)的過(guò)程中,∠CED的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明理由;若不發(fā)生變化,試求出其值.
(3)如圖3,延長(zhǎng)BA至G,已知∠BAO、∠OAG的角平分線與∠BOQ的角平分線及延長(zhǎng)線相交于E、F,在△AEF中,如果有一個(gè)角是另一個(gè)角的3倍,試求∠ABO的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
點(diǎn)A、B在數(shù)軸上分別表示實(shí)數(shù),A、B兩點(diǎn)這間的距離表示為,當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A在原點(diǎn),如圖1,;
當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí):
①如圖2,點(diǎn)A、B都在原點(diǎn)的右邊;
②如圖3,點(diǎn)A、B都在原點(diǎn)的左邊;
③如圖4,點(diǎn)A、B在原點(diǎn)的兩邊.
綜上,數(shù)軸上A、B兩點(diǎn)之間的距離.
回答下列問(wèn)題:
(1)數(shù)軸上表示2和5兩點(diǎn)之間的距離是 ,數(shù)軸上表示-2和-5的兩點(diǎn)之間的距離是 ,數(shù)軸上表示1和-3的兩點(diǎn)之間的距離是 ;
(2)數(shù)軸上表示和-1的兩點(diǎn)A和B之間的距離是 ,如果,那么為 ;
(3)求的最小值.(提示:)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:E是∠AOB的平分線上一點(diǎn),EC⊥OA,ED⊥OB,垂足為C,D。
求證:(1)OC=OD,(2)DF=CF。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】化工材料經(jīng)銷公司購(gòu)進(jìn)一種化工原料若干千克,價(jià)格為每千克30元。物價(jià)部門規(guī)定其銷售單價(jià)不高于每千克60元,不低于每千克30元。經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):日銷售量y(千克)是銷售單價(jià)x(元)的一次函數(shù),且當(dāng)x=60時(shí),y=80;x=50時(shí),y=100。在銷售過(guò)程中,每天還要支付其他費(fèi)用450元。
(1)求出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍。
(2)求該公司銷售該原料日獲利w(元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式。
(3)當(dāng)銷售單價(jià)為多少元時(shí),該公司日獲利最大?最大獲利是多少元。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com