【題目】如圖,平面直角坐標(biāo)系中有點(diǎn)B(-2,0)和y軸上的動點(diǎn)A(0,a),其中a>0,以點(diǎn)A為直角頂點(diǎn)在第二象限內(nèi)作等腰直角三角形ABC,設(shè)點(diǎn)C的坐標(biāo)為(c,d).
(1)當(dāng)a=4時,則點(diǎn)C的坐標(biāo)為( , );
(2)動點(diǎn)A在運(yùn)動的過程中,試判斷c+d的值是否發(fā)生變化?若不變,請求出其值;若發(fā)生變化,請說明理由.
(3)當(dāng)a=4時,在坐標(biāo)平面內(nèi)是否存在點(diǎn)P(不與點(diǎn)C重合),使△PAB與△ABC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
【答案】(1)﹣4,6;(2)c+d=2的值不變,值為2;(3)(﹣6,2)或(4,2)或(2,﹣2).
【解析】
(1)先過點(diǎn)C作CE⊥y軸于E,證△AEC≌△BOA,推出CE=OA=4,AE=BO=2,即可得出點(diǎn)C的坐標(biāo);
(2)先過點(diǎn)C作CE⊥y軸于E,證△AEC≌△BOA,推出CE=OA=a,AE=BO=2,可得OE=a+2,即可得出點(diǎn)C的坐標(biāo)為(﹣a,a+2),據(jù)此可得c+d的值不變;
(3)分為三種情況討論,分別畫出符合條件的圖形,構(gòu)造直角三角形,證出三角形全等,根據(jù)全等三角形對應(yīng)邊相等即可得出答案.
(1)如圖1,過點(diǎn)C作CE⊥y軸于E,則∠CEA=∠AOB.
∵△ABC是等腰直角三角形,∴AC=BA,∠BAC=90°,∴∠ACE+∠CAE=90°=∠BAO+∠CAE,∴∠ACE=∠BAO.
在△ACE和△BAO中,∵,∴△ACE≌△BAO(AAS),∴BO=AE,AO=CE.
∵B(﹣2,0),A(0,4),∴BO=AE=2,AO=CE=4,∴OE=4+2=6,∴C(﹣4,6).
故答案為:﹣4,6;
(2)動點(diǎn)A在運(yùn)動的過程中,c+d=2的值不變,值為2.證明如下:
如圖1,過點(diǎn)C作CE⊥y軸于E,則∠CEA=∠AOB.
∵△ABC是等腰直角三角形,∴AC=BA,∠BAC=90°,∴∠ACE+∠CAE=90°=∠BAO+∠CAE,∴∠ACE=∠BAO.
在△ACE和△BAO中,∵,∴△ACE≌△BAO(AAS),∴BO=AE,AO=CE.
∵B(﹣2,0),A(0,a),∴BO=AE=2,AO=CE=a,∴OE=2+a,∴C(﹣a,2+a).
又∵點(diǎn)C的坐標(biāo)為(c,d),∴c+d=﹣a+2+a=2,即c+d=2,值不變;
(3)存在一點(diǎn)P,使△PAB與△ABC全等,分為三種情況:
①如圖2,過P作PE⊥x軸于E,則∠PBA=∠AOB=∠PEB=90°,∴∠EPB+∠PBE=90°,∠PBE+∠ABO=90°,∴∠EPB=∠ABO.
在△PEB和△BOA中,∵,∴△PEB≌△BOA(AAS),∴PE=BO=2,EB=AO=4,∴OE=2+4=6,即P的坐標(biāo)是(﹣6,2);
②如圖3,過C作CM⊥x軸于M,過P作PE⊥x軸于E,則∠CMB=∠PEB=90°.
∵△CAB≌△PAB,∴∠PBA=∠CBA=45°,BC=BP,∴∠CBP=90°,∴∠MCB+∠CBM=90°,∠CBM+∠PBE=90°,∴∠MCB=∠PBE.
在△CMB和△BEP中,∵,∴△CMB≌△BEP(AAS),∴PE=BM,CM=BE.
∵C(﹣4,6),B(﹣2,0),∴PE=2,OE=BE﹣BO=6﹣2=4,即P的坐標(biāo)是(4,2);
③如圖4,過P作PE⊥x軸于E,則∠BEP=∠AOB=90°.
∵△CAB≌△PBA,∴AB=BP,∠CAB=∠ABP=90°,∴∠ABO+∠PBE=90°,∠PBE+∠BPE=90°,∴∠ABO=∠BPE.
在△BOA和△PEB中,∵,∴△BOA≌△PEB(AAS),∴PE=BO=2,BE=OA=4,∴OE=BE﹣BO=4﹣2=2,即P的坐標(biāo)是(2,﹣2).
綜合上述:符合條件的P的坐標(biāo)是(﹣6,2)或(4,2)或(2,﹣2).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D、E分別是AB、AC的中點(diǎn),連接CD.過E作EF∥DC交BC的延長線于F.
(1)證明:四邊形CDEF是平行四邊形;
(2)若四邊形CDEF的周長是18cm,AC的長為6cm,求線段AB的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)直接寫出A點(diǎn)關(guān)于y軸對稱的點(diǎn)的坐標(biāo)是______.
(2)將△ABC向右平移六個單位后得△A1B1C1,則線段AB平移掃過的面積是______.
(3)作出△A1B1C1關(guān)于x軸對稱的圖形△A2B2C2,畫出△A2B2C2,連接A2B交y軸于點(diǎn)D,直接寫出D點(diǎn)的坐標(biāo)______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
為宣傳社會主義核心價值觀,某社區(qū)居委會計(jì)劃制作1200個大小相同的宣傳欄.現(xiàn)有甲、乙兩個廣告公司都具備制作能力,居委會派出相關(guān)人員分別到這兩個廣告公司了解情況,獲得如下信息:
信息一:甲公司單獨(dú)制作完成這批宣傳欄比乙公司單獨(dú)制作完成這批宣傳欄多用10天;
信息二:乙公司每天制作的數(shù)量是甲公司每天制作數(shù)量的1.2倍.
根據(jù)以上信息,求甲、乙兩個廣告公司每天分別能制作多少個宣傳欄?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C,E,F,B在一條直線上,點(diǎn)A,D在BC異側(cè),AB∥CD,AE=DF,∠A=∠D.
(1)求證:AB=CD;
(2)若AB=CF,∠B=50°,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場為了吸引顧客,設(shè)計(jì)了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場同一日內(nèi),每消費(fèi)滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據(jù)兩小球所標(biāo)金額的和返還相應(yīng)價格的購物券,可以重新在本商場消費(fèi),某顧客剛好消費(fèi)200元.
(1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;
(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D,E分別在AB,AC上,CE=BC,連接CD,將線段CD繞點(diǎn)C按順時針方向旋轉(zhuǎn)90°后得CF,連接EF.
(1)補(bǔ)充完成圖形;
(2)若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖顯示了用計(jì)算機(jī)模擬隨機(jī)投擲一枚圖釘?shù)哪炒螌?shí)驗(yàn)的結(jié)果.下面有三個推斷:①某次實(shí)驗(yàn)投擲次數(shù)是500,計(jì)算機(jī)記錄“釘尖向上”的次數(shù)是308,則該次試驗(yàn)“釘尖向上”的頻率是0.616;②隨著實(shí)驗(yàn)次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動,顯示出一定的穩(wěn)定性,可以估計(jì)“釘尖向上”的概率是0.618;③若再次用計(jì)算機(jī)模擬實(shí)驗(yàn),則當(dāng)投擲次數(shù)為1000時,“釘尖向上”的概率一定是0.620.其中合理的是( 。
A. ①② B. ②③ C. ①③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角△ABC內(nèi)接于⊙O,點(diǎn)D是直角△ABC斜邊AB上的一點(diǎn),過點(diǎn)D作AB的垂線交AC于E,過點(diǎn)C作∠ECP=∠AED,CP交DE的延長線于點(diǎn)P,連結(jié)PO交⊙O于點(diǎn)F.
(1)求證:PC是⊙O的切線;
(2)若PC=3,PF=1,求AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com