【題目】如圖,點C,E,F,B在一條直線上,點A,DBC異側(cè),ABCD,AE=DF,∠A=D

1)求證:AB=CD;

2)若AB=CF,∠B=50°,求∠D的度數(shù).

【答案】1)證明見解析;(265°.

【解析】

1)易證得△ABE≌△DCF,即可得AB=CD;

2)易證得△ABE≌△DCF,即可得AB=CD,又由AB=CF,∠B=30°,即可證得△ABE是等腰三角形,根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理解答即可.

1)∵ABCD,∴∠B=C

在△ABE和△DCF中,∵,∴△ABE≌△DCFAAS),∴AB=CD;

2)∵△ABE≌△DCF,∴AB=CD,BE=CF

AB=CF,∴AB=BE,∴△ABE是等腰三角形.

∵∠B=30°,∴∠D=A=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】拋物線x軸交于點AB(A在點B的左邊), P在拋物線上.

(1)Cx軸上一個動點,四邊形ACPQ是正方形,則滿足條件 的點Q的坐標是______

(2)連結(jié)AP,以AP為一條對角線作平行四邊形AMPN,使點M 以點(1,0),(0,1)為端點的線段上,則當點N的縱坐標取最小值時,N的坐標為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點E上的一點,∠DBC=BED.

(1)請判斷直線BC與⊙O的位置關(guān)系,并說明理由;

(2)已知AD=5,CD=4,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線表示三條相互交叉的公路,現(xiàn)要建一個貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有(

A.一處B.二處C.三處D.四處

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,在中,,的平分線交,交的角平分線,交

1)求證:

2)判斷的位置關(guān)系,并說明理由.

3)再找出二組相等的線段:①________;②___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中有點B(20)y軸上的動點A(0,a),其中a>0,以點A為直角頂點在第二象限內(nèi)作等腰直角三角形ABC,設點C的坐標為(cd)

1)當a=4時,則點C的坐標為( , );

2)動點A在運動的過程中,試判斷c+d的值是否發(fā)生變化?若不變,請求出其值;若發(fā)生變化,請說明理由.

3)當a=4時,在坐標平面內(nèi)是否存在點P(不與點C重合),使PABABC全等?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為6,E、F分別在AB,AD,CE=3,且∠ECF=45°,CF長為(

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為矩形,點E是邊BC的中點,AFED,AEDF

1)求證:四邊形AEDF為菱形;

2)試探究:當ABBC  ,菱形AEDF為正方形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知P是⊙O外的一點,OP=4,OP交⊙O于點A,且A是OP的中點,Q是⊙O上任意一點.

(1)如圖1,若PQ是⊙O的切線,求∠QOP的大;

(2)如圖2,若∠QOP=90°,求PQ被⊙O截得的弦QB的長.

查看答案和解析>>

同步練習冊答案