【題目】如圖,在△ABC中,AB=5,AC=13,BC邊上的中線AD=6,則△ABD的面積是______.
【答案】15
【解析】
延長AD到點(diǎn)E,使DE=AD=6,連接CE,可證明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理證明△CDE是直角三角形,即△ABD為直角三角形,進(jìn)而可求出△ABD的面積.
解:延長AD到點(diǎn)E,使DE=AD=6,連接CE,
∵AD是BC邊上的中線,
∴BD=CD,
在△ABD和△CED中,
,
∴△ABD≌△CED(SAS),
∴CE=AB=5,∠BAD=∠E,
∵AE=2AD=12,CE=5,AC=13,
∴CE2+AE2=AC2,
∴∠E=90°,
∴∠BAD=90°,
即△ABD為直角三角形,
∴△ABD的面積=ADAB=15.
故答案為:15.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識(shí),求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家環(huán)保局統(tǒng)一規(guī)定,空氣質(zhì)量分為5級(jí):當(dāng)空氣污染指數(shù)達(dá)0—50時(shí)為1級(jí),質(zhì)量為優(yōu);51—100時(shí)為2級(jí),質(zhì)量為良;101—200時(shí)為3級(jí),輕度污染;201—300時(shí)為4級(jí),中度污染;300以上時(shí)為5級(jí),重度污染.某城市隨機(jī)抽取了2015年某些天的空氣質(zhì)量檢測結(jié)果,并整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息,解答下列各題:
(1) 本次調(diào)查共抽取了 天的空氣質(zhì)量檢測結(jié)果進(jìn)行統(tǒng)計(jì);
(2) 補(bǔ)全條形統(tǒng)計(jì)圖;
(3) 扇形統(tǒng)計(jì)圖中3級(jí)空氣質(zhì)量所對(duì)應(yīng)的圓心角為 °;
(4) 如果空氣污染達(dá)到中度污染或者以上,將不適宜進(jìn)行戶外活動(dòng),根據(jù)目前的統(tǒng)計(jì),請(qǐng)你估計(jì)2015年該城市有多少天不適宜開展戶外活動(dòng).(2015年共365天)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面上,Rt△ABC與直徑為CE的半圓O如圖1擺放,∠B=90°,AC=2CE=m,BC=n,半圓O交BC邊于點(diǎn)D,將半圓O繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn),點(diǎn)D隨半圓O旋轉(zhuǎn)且∠ECD始終等于∠ACB,旋轉(zhuǎn)角記為α(0°≤α≤180°).
(1)當(dāng)α=0°時(shí),連接DE,則∠CDE= °,CD= ;
(2)試判斷:旋轉(zhuǎn)過程中的大小有無變化?請(qǐng)僅就圖2的情形給出證明;
(3)若m=10,n=8,當(dāng)旋轉(zhuǎn)的角度α恰為∠ACB的大小時(shí),求線段BD的長;
(4)若m=6,n=,當(dāng)半圓O旋轉(zhuǎn)至與△ABC的邊相切時(shí),直接寫出線段BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以A(3,0)為圓心,以5為半徑的圓與x軸相交于B. C,與y軸的負(fù)半軸相交于D,拋物線y=x+bx+c經(jīng)過B. C. D三點(diǎn)。
(1)求此拋物線的解析式;
(2)若動(dòng)直線MN(MN∥x軸)從點(diǎn)D開始,以每秒1個(gè)長度單位的速度沿y軸的正方向移動(dòng),且與線段CD、y軸分別交于M、N兩點(diǎn),動(dòng)點(diǎn)P同時(shí)從點(diǎn)C出發(fā),在線段OC上以每秒2個(gè)長度單位的速度向原點(diǎn)O運(yùn)動(dòng),連接PM,設(shè)運(yùn)動(dòng)時(shí)間為t秒,若以P、C. M為頂點(diǎn)的三角形與△OCD相似,求實(shí)數(shù)t的值;
②當(dāng)t為何值時(shí), 的值最大,并求出最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(背景知識(shí))
數(shù)軸是初中數(shù)學(xué)的一個(gè)重要工具,利用數(shù)軸可以將數(shù)與形完美結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)有許多重要的規(guī)律:
例如,若數(shù)軸上點(diǎn)、點(diǎn)表示的數(shù)分別為、,則、兩點(diǎn)之間的距離,線段的中點(diǎn)表示的數(shù)為.
(問題情境)
在數(shù)軸上,點(diǎn)表示的數(shù)為-20,點(diǎn)表示的數(shù)為10,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)也從點(diǎn)出發(fā)沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng),已知運(yùn)動(dòng)到4秒鐘時(shí),、兩點(diǎn)相遇,且動(dòng)點(diǎn)、運(yùn)動(dòng)的速度之比是(速度單位:單位長度/秒).
備用圖
(綜合運(yùn)用)
(1)點(diǎn)的運(yùn)動(dòng)速度為______單位長度/秒,點(diǎn)的運(yùn)動(dòng)速度為______單位長度/秒;
(2)當(dāng)時(shí),求運(yùn)動(dòng)時(shí)間;
(3)若點(diǎn)、在相遇后繼續(xù)以原來的速度在數(shù)軸上運(yùn)動(dòng),但運(yùn)動(dòng)的方向不限,我們發(fā)現(xiàn):隨著動(dòng)點(diǎn)、的運(yùn)動(dòng),線段的中點(diǎn)也隨著運(yùn)動(dòng).問點(diǎn)能否與原點(diǎn)重合?若能,求出從、相遇起經(jīng)過的運(yùn)動(dòng)時(shí)間,并直接寫出點(diǎn)的運(yùn)動(dòng)方向和運(yùn)動(dòng)速度;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形,點(diǎn)為對(duì)角線上一個(gè)動(dòng)點(diǎn),為邊上一點(diǎn),且.
(1)求證:;
(2)若四邊形的面積為25,試探求與滿足的數(shù)量關(guān)系式;
(3)若為射線上的點(diǎn),設(shè),四邊形的周長為,且,求與的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上兩點(diǎn)A、B對(duì)應(yīng)的數(shù)分別為-30、0.若點(diǎn)A、B同時(shí)出發(fā),點(diǎn)A以每秒2個(gè)單位長度的速度向右運(yùn)動(dòng);點(diǎn)B以每秒3個(gè)單位長度的速度向左運(yùn)動(dòng),到達(dá)點(diǎn)A出發(fā)時(shí)的位置后立即以每秒4個(gè)單位長度的速度向右運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)求點(diǎn)A和點(diǎn)B第一次相遇時(shí)t的值;
(2)當(dāng)點(diǎn)A和點(diǎn)B之間的距離為6個(gè)單位長度時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,反比例函數(shù)(x>0)的圖象經(jīng)過點(diǎn)A(,1),射線AB與反比例函數(shù)圖象交于另一點(diǎn)B(1,a),射線AC與y軸交于點(diǎn)C,∠BAC=75°,AD⊥y軸,垂足為D.
(1)求k的值;
(2)求tan∠DAC的值及直線AC的解析式;
(3)如圖2,M是線段AC上方反比例函數(shù)圖象上一動(dòng)點(diǎn),過M作直線l⊥x軸,與AC相交于點(diǎn)N,連接CM,求△CMN面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com