【題目】如圖,等腰三角形ABC中,AC=BC=10,AB=12,以BC為直徑作⊙O交AB于點D,交AC于點G,DF⊥AC,垂足為F,交CB的延長線于點E.
(1)求證:直線EF是⊙O的切線;
(2)求cos∠E的值.
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)求證直線EF是⊙O的切線,只要連接OD證明OD⊥EF即可;
(2)根據(jù)∠E=∠CBG,可以把求cos∠E的值得問題轉化為求cos∠CBG,進而轉化為求Rt△BCG中,兩邊的比的問題.
試題解析:(1)如圖,
連接OD、CD.
∵BC是直徑,
∴CD⊥AB.
∵AC=BC.
∴D是AB的中點.
∵O為CB的中點,
∴OD∥AC.
∵DF⊥AC,
∴OD⊥EF.
∴EF是O的切線.
(2)連BG.
∵BC是直徑,
∴∠BDC=90°.
∴CD==8.
∵ABCD=2S△ABC=ACBG,
∴BG=.
∴CG=.
∵BG⊥AC,DF⊥AC,
∴BG∥EF.
∴∠E=∠CBG,
∴cos∠E=cos∠CBG=.
科目:初中數(shù)學 來源: 題型:
【題目】在某批次的l00件產(chǎn)品中,有3件是不合格產(chǎn)品,從中任意抽取一件檢驗,則抽到不合格產(chǎn)品的概率是___________。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠B=90°,BC=2AB=8,點D、E分別是邊BC、AC的中點,連接DE,將△EDC繞點C按順時針方向旋轉,記旋轉角為α.
(1)問題發(fā)現(xiàn)
①當α=0°時,= ;②當α=180°時,= .
(2)拓展探究
試判斷:當0°≤α<360°時,的大小有無變化?請僅就圖2的情形給出證明.
(3)問題解決
當△EDC旋轉至A,D,E三點共線時,直接寫出線段BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列事實可以用“兩點確定一條直線”來解釋的個數(shù)為
①墻上釘木條至少要兩顆釘子才能牢固;②農(nóng)民拉繩播秧;③解放軍叔叔打靶瞄準;④從A地到B地架設電線,總是盡可能沿著線段AB架設.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國家決定對某藥品分兩次降價,若設平均每次降價的百分比為x,該藥品的原價為33元,降價后的價格為y元,則y與x之間的函數(shù)關系為( )
A. y=66(1-x) B. y=33(1-x)
C. y=33(1-x2) D. y=33(1-x)2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把函數(shù)y=﹣2x+3的圖象向左平移2個單位長度,再向下平移2個單位長度,可得到的圖象的函數(shù)解析式是( 。
A. y=﹣2x+7 B. y=﹣2x﹣7 C. y=﹣2x﹣3 D. y=﹣2x
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com