【題目】如圖,AB是⊙的直徑,CD是∠ACB的平分線交⊙O于點D,過D作⊙O的切線交CB的延長線于點E.若AB=4,∠E=75°,則CD的長為( 。
A. B. 2 C. D.
【答案】C
【解析】如圖連接OC、OD,CD與AB交于點F.
∵AB是直徑,
∴∠ACB=90°,
∵CD平分∠ACB,
∴ ,
∴OD⊥AB,
∵DE是切⊙O切線,
∴DE⊥OD,
∴AB∥DE,∵∠E=75°,
∴∠ABC=∠E=75°,∠CAB=15°,
∴∠CFB=∠CAB+∠ACF=15°+45°=60°,
∴∠OFD=∠CFB=60°,
在RT△OFD中,∵∠DOF=90°,OD=2,∠ODF=30°,
∴OF=ODtan30°=,DF=2OF=,
∵OD=OC,
∴∠ODC=∠OCD=30°,
∵∠COB=∠CAB+∠ACO=30°,
∴∠FOC=∠FCO,
∴CF=FO=,
∴CD=CF+DF=,
故選C.
科目:初中數學 來源: 題型:
【題目】下列分解因式正確的是( )
A. m4﹣8m2+64=(m2﹣8)2
B. x4﹣y4=(x2+y2)(x2﹣y2)
C. 4a2﹣4a+1=(2a﹣1)2
D. a(x﹣y)﹣b(y﹣x)=(x﹣y)(a﹣b)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與軸相交于點A、B,且過點C(4,3).
(1)求的值和該拋物線頂點P的坐標;
(2)將該拋物線向左平移,記平移后拋物線的頂點為P′,當四邊形AP′PB為平行四邊形時,求平移后拋物線的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】均勻的正四面體的各面依次標有1,2,3,4四個數字.小明做了60次投擲實驗,結果統(tǒng)計如下:
朝下的數字 | 1 | 2 | 3 | 4 |
出現的次數 | 16 | 20 | 14 | 10 |
(1)計算上述實驗中“4”朝下的頻率.
(2)“根據實驗結果,投擲一次正四面體,出現2朝下的概率是”的說法正確嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,筆直的公路上A、B兩點相距25km,C、D為兩村莊,DA⊥AB于點A,CB⊥AB于點B,已知DA=15km,CB=10km,現在要在公路的AB段上建一個土特產品收購站E,使得C、D兩村到收購站E的距離相等,則收購站E應建在離A點多遠處?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=4,BC=3,矩形在直線l上繞其右下角的頂點B向右旋轉90°至圖①位置,再繞右下角的頂點繼續(xù)向右旋轉90°至圖②位置,…,以此類推,這樣連續(xù)旋轉2016次后,頂點A在整個旋轉過程中所經過的路程之和是( 。
A. 2015π B. 3019.5π C. 3018π D. 3024π
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com