【題目】如圖,在平面直角坐標(biāo)系中,過點A(2,0)的直線l與y軸交于點B,tan∠OAB=,直線l上的點P位于y軸左側(cè),且到y軸的距離為1.
(1)求直線l的表達式;
(2)若反比例函數(shù)的圖象經(jīng)過點P,求m的值.
【答案】(1);(2).
【解析】試題分析:(1)已知A(2,0)an∠OAB==,可求得OB=1,所以B(0,1),設(shè)直線l的表達式為,用待定系數(shù)法即可求得直線l的表達式;(2)根據(jù)直線l上的點P位于y軸左側(cè),且到y軸的距離為1可得點P的橫坐標(biāo)為-1,代入一次函數(shù)的解析式求得點P的縱坐標(biāo),把點P的坐標(biāo)代入反比例函數(shù)中,即可求得m的值.
試題解析:(1) ∵A(2,0),∴OA=2.
∵tan∠OAB==,
∴OB="1." ∴B(0,1).
設(shè)直線l的表達式為,則
∴.
∴直線l的表達式為.
(2) ∵點P到y軸的距離為1,且點P在y軸左側(cè),
∴點P的橫坐標(biāo)為-1.
又∵點P在直線l上,
∴點P的縱坐標(biāo)為: .
∴點P的坐標(biāo)是.
∵反比例函數(shù)的圖象經(jīng)過點P,
∴.
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中, E是AD的中點,將沿直線BE折疊后得到,延長BG交CD于點F若, 則FD的長為( )
A.3B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標(biāo)為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.
其中正確結(jié)論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)興趣小組活動中,小明和小紅兩位同學(xué)設(shè)計了如圖所示的兩個轉(zhuǎn)盤做游戲(每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內(nèi)標(biāo)上數(shù)字).游戲規(guī)則如下:兩人分別同時轉(zhuǎn)動甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和小于12,則小明獲勝;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和大于12,則小紅獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).
(1)請用列表或畫樹狀圖的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;
(2)分別求出小明和小紅獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,工人師傅做一個矩形鋁合金窗框分下面三個步驟進行:
(1)先截出兩對符合規(guī)格的鋁合金窗料(如圖①所示),使 .
(2)擺放成如圖②的四邊形,則這時窗框的形狀是平行四邊形,它的依據(jù)是____________.
(3)將直尺緊靠窗框的一個角(如圖③),調(diào)整窗框的邊框,當(dāng)直角尺的兩條直角邊與窗框無縫隙時(如圖④,說明窗框合格,這時窗框是矩形,它的依據(jù)是_____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點都在方格線的交點(格點)上.
(1)將△ABC繞C點按逆時針方向旋轉(zhuǎn)90°得到△A′B′C′,請在圖中畫出△A′B′C′.
(2)將△ABC向上平移1個單位,再向右平移5個單位得到△A″B″C″,請在圖中畫出△A″B″C″.
(3)若將△ABC繞原點O旋轉(zhuǎn)180°,A的對應(yīng)點A1的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個頂點分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C1,平移△ABC,若點A的對應(yīng)點A2的坐標(biāo)為(0,﹣4),畫出平移后對應(yīng)的△A2B2C2;
(2)若將△A1B1C1繞某一點旋轉(zhuǎn)可以得到△A2B2C2,請直接寫出旋轉(zhuǎn)中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:2018年3月5日上午9時,十三屆全國人大一次會議在人民大會堂開幕,聽取國務(wù)院總理李克強作政府工作報告,李克強總結(jié)回顧過去五年工作指出:第十二屆全國人民代表大會第一次會議以來的五年,是我國發(fā)展進程中極不平凡的五年,……五年來,經(jīng)濟實力躍上新臺階,國內(nèi)生產(chǎn)總值從54萬億元增加到82.7萬億元,年均增長7.1%,占世界經(jīng)濟比重從11.4%提高到15%左右,對世界經(jīng)濟增長貢獻率超過30%財政收入從11.7萬億元增加到17.3萬億元居民消費價格年均上漲1.9%,保持較低水平城鎮(zhèn)新增就業(yè)6600萬人以上,13億多人口的大國實現(xiàn)了比較充分就業(yè)解決問題:
(1)請你把數(shù)據(jù)“6600萬”用科學(xué)記數(shù)法表示出來;
(2)數(shù)據(jù)“82.7萬億”精確到哪一位?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一副直角三角尺的直角頂點C疊放在一起.
(1)若∠DCE=35°,∠ACB= ;若∠ACB=140°,則∠DCE= ;
(2)猜想∠ACB與∠DCE的大小有何特殊關(guān)系,并說明理由;
(3)若保持三角尺BCE不動,三角尺ACD的CD邊與CB邊重合,然后將三角尺ACD繞點C按逆時針方向任意轉(zhuǎn)動一個角度∠BCD.設(shè)∠BCD=α(0°<α<90°)
①∠ACB能否是∠DCE的4倍?若能求出α的值;若不能說明理由.
②三角尺ACD轉(zhuǎn)動中,∠BCD每秒轉(zhuǎn)動3°,當(dāng)∠DCE=21°時,轉(zhuǎn)動了多少秒?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com