【題目】如圖,以O(shè)為圓心,4為半徑的圓與x軸交于點A,C在⊙O上,∠OAC=60°.
(1)求∠AOC的度數(shù);
(2)P為x軸正半軸上一點,且PA=OA,連接PC,試判斷PC與⊙O的位置關(guān)系,并說明理由;
(3)有一動點M從A點出發(fā),在⊙O上按順時針方向運動一周,當(dāng)S△MAO=S△CAO時,求動點M所經(jīng)過的弧長,并寫出此時M點的坐標(biāo).
【答案】(1)60°;(2)見解析;(3)對應(yīng)的M點坐標(biāo)分別為:M1(2,﹣2)、M2(﹣2,﹣2)、M3(﹣2,2)、M4(2,2).
【解析】
(1)由于∠OAC=60°,易證得△OAC是等邊三角形,即可得∠AOC=60°.
(2)由(1)的結(jié)論知:OA=AC,因此OA=AC=AP,即OP邊上的中線等于OP的一半,由此可證得△OCP是直角三角形,且∠OCP=90°,由此可判斷出PC與⊙O的位置關(guān)系.
(3)此題應(yīng)考慮多種情況,若△MAO、△OAC的面積相等,那么它們的高必相等,因此有四個符合條件的M點,即:C點以及C點關(guān)于x軸、y軸、原點的對稱點,可據(jù)此進(jìn)行求解.
(1)∵OA=OC,∠OAC=60°,
∴△OAC是等邊三角形,
故∠AOC=60°.
(2)由(1)知:AC=OA,已知PA=OA,即OA=PA=AC;
∴AC=OP,因此△OCP是直角三角形,且∠OCP=90°,
而OC是⊙O的半徑,
故PC與⊙O的位置關(guān)系是相切.
(3)如圖;有三種情況:
①取C點關(guān)于x軸的對稱點,則此點符合M點的要求,此時M點的坐標(biāo)為:M1(2,﹣2);
劣弧MA的長為:;
②取C點關(guān)于原點的對稱點,此點也符合M點的要求,此時M點的坐標(biāo)為:M2(﹣2,﹣2);
劣弧MA的長為:;
③取C點關(guān)于y軸的對稱點,此點也符合M點的要求,此時M點的坐標(biāo)為:M3(﹣2,2);
優(yōu)弧MA的長為:;
④當(dāng)C、M重合時,C點符合M點的要求,此時M4(2,2);
優(yōu)弧MA的長為:;
綜上可知:當(dāng)S△MAO=S△CAO時,動點M所經(jīng)過的弧長為對應(yīng)的M點坐標(biāo)分別為:M1(2,﹣2)、M2(﹣2,﹣2)、M3(﹣2,2)、M4(2,2).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC、BD相交于點O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求證:四邊形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,則∠BDF的度數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點B作⊙O的切線交CD的延長線于點E,BC=6, .求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與直線交于點,與軸交于點,且.
(1)求一次函數(shù)的表達(dá)式;
(2)求兩直線與軸圍成的三角形的面積.
(3)在軸上是否存在點,使是以為腰的等腰三角形,若存在,直接寫出的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC=6,AB=AC,E,F(xiàn)分別為AB,AC上的點(E,F(xiàn)不與A重合),且EF∥BC.將△AEF沿著直線EF向下翻折,得到△A′EF,再展開.
(1)請判斷四邊形AEA′F的形狀,并說明理由;
(2)當(dāng)四邊形AEA′F是正方形,且面積是△ABC的一半時,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知反比例函數(shù):y=與一次函數(shù)y=k2x+b的圖象交于點A(1,8)、B(﹣4,m).
(1)分別求反比例函數(shù)和一次函數(shù)的解析式;
(2)若M(x1,y1)、N(x2,y2)是反比例函數(shù)y=圖象上的兩點,且x1<x2,y1<y2,指出點M,N各位于哪個象限,并簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大樓(可以看作不透明的長方體)的四周都是空曠的水平地面.地面上有甲、乙兩人,他們現(xiàn)在分別位于點和點處,、均在的中垂線上,且、到大樓的距離分別為米和米,又已知長米,長米,由于大樓遮擋著,所以乙不能看到甲.若乙沿著大樓的外面地帶行走,直到看到甲(甲保持不動),則他行走的最短距離長為________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線(a≠0)的圖象與x軸交于A、B兩點,與y軸交于C點,已知B點坐標(biāo)為(4,0).
(1)求拋物線的解析式;
(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標(biāo);
(3)若點M是線段BC下方的拋物線上一點,求△MBC的面積的最大值,并求出此時M點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的對稱軸為直線,與軸的一個交點在和之間,其部分圖象如圖所示.則下列結(jié)論:①;②;③;④(為實數(shù));⑤點,,是該拋物線上的點,則,正確的個數(shù)有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com