【題目】學(xué)校運(yùn)動(dòng)會(huì)的立定跳遠(yuǎn)和1分鐘跳繩兩個(gè)單項(xiàng)比賽分成預(yù)賽和決賽兩個(gè)階段.下表為參加這兩項(xiàng)比賽的10名學(xué)生的預(yù)賽成績(jī):
學(xué)生編號(hào) 成績(jī) 項(xiàng)目 | 3104 | 3508 | 3115 | 3406 | 3317 | 3413 | 3218 | 3307 | 3519 | 3210 |
立定跳遠(yuǎn)(單位:米) | 1.96 | 1.92 | 1.82 | 1.80 | 1.78 | 1.76 | 1.74 | 1.72 | 1.68 | 1.60 |
1分鐘跳繩(單位:次) | 163 | 175 | 160 | 163 | 172 | 170 | 165 |
在這10名學(xué)生中,同時(shí)進(jìn)入兩項(xiàng)決賽的只有6人,進(jìn)入立定跳遠(yuǎn)決賽的有8
【答案】161或162或163
【解析】
首先確定進(jìn)入立定跳遠(yuǎn)決賽的有8人,再推出1分鐘跳繩的6人,構(gòu)建不等式解決問(wèn)題即可.
∵進(jìn)入立定跳遠(yuǎn)決賽的有8人,
∴3104,3508,3115,3406,3317,3413,3218,3307的學(xué)生進(jìn)入定跳遠(yuǎn)決賽,
∵同時(shí)進(jìn)入兩項(xiàng)決賽的只有6人,且兩項(xiàng)決賽的6人中有“3508號(hào)”學(xué)生,沒(méi)有“3307號(hào)”學(xué)生
∴3115,3413,3218,3104,3317進(jìn)入1分鐘跳繩,
∴>160,<163,
∴,
∴161或162或163.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在半徑為4的⊙O中,CD為直徑,AB⊥CD且過(guò)半徑OD的中點(diǎn),點(diǎn)E為⊙O上一動(dòng)點(diǎn),CF⊥AE于點(diǎn)F.當(dāng)點(diǎn)E從點(diǎn)B出發(fā)順時(shí)針運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)F所經(jīng)過(guò)的路徑長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一般情況下,學(xué)生注意力上課后逐漸增強(qiáng),中間有段時(shí)間處于較理想的穩(wěn)定狀態(tài),隨后開(kāi)始分散.實(shí)驗(yàn)結(jié)果表明,學(xué)生注意力指數(shù)y隨時(shí)間x(min)的變化規(guī)律如圖所示(其中分別為線段,為雙曲線的一部分):
(1)上課后第與第相比較,何時(shí)學(xué)生注意力更集中?
(2)某道難題需連續(xù)講,為保證效果,學(xué)生注意力指數(shù)不宜低于,老師能否在所需要求下講完這道題?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),已知點(diǎn)G在正方形ABCD的對(duì)角線AC上,GE⊥BC,垂足為點(diǎn)E,GF⊥CD,垂足為點(diǎn)F.
(1)證明與推斷:
①求證:四邊形CEGF是正方形;
②推斷:的值為 :
(2)探究與證明:
將正方形CEGF繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說(shuō)明理由:
(3)拓展與運(yùn)用:
正方形CEGF在旋轉(zhuǎn)過(guò)程中,當(dāng)B,E,F(xiàn)三點(diǎn)在一條直線上時(shí),如圖(3)所示,延長(zhǎng)CG交AD于點(diǎn)H.若AG=6,GH=2,則BC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,的半徑為,點(diǎn)與圓心不重合,給出如下定義:若在上存在一點(diǎn),使,則稱(chēng)點(diǎn)為的特征點(diǎn).
(1)當(dāng)的半徑為1時(shí),如圖1.
①在點(diǎn),,中,的特征點(diǎn)是__________.
②點(diǎn)在直線上,若點(diǎn)為的特征點(diǎn),求的取值范圍.
(2)如圖2,的圓心在軸上,半徑為2,點(diǎn),.若線段上的所有點(diǎn)都是的特征點(diǎn),直接寫(xiě)出圓心的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:對(duì)于任意正實(shí)數(shù)a、b,∵≥0, ∴≥0,
∴≥,只有當(dāng)a=b時(shí),等號(hào)成立.
結(jié)論:在≥(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥,只有當(dāng)a=b時(shí),a+b有最小值.
根據(jù)上述內(nèi)容,回答下列問(wèn)題:
若m>0,只有當(dāng)m= 時(shí),有最小值 .
思考驗(yàn)證:如圖1,AB為半圓O的直徑,C為半圓上任意一點(diǎn)(與點(diǎn)A、B不重合),過(guò)點(diǎn)C作CD⊥AB,垂足為D,AD=a,DB=b.
試根據(jù)圖形驗(yàn)證≥,并指出等號(hào)成立時(shí)的條件.
探索應(yīng)用:如圖2,已知A(-3,0),B(0,-4),P為雙曲線(x>0)上的任意一點(diǎn),過(guò)點(diǎn)P作PC⊥x軸于點(diǎn)C,PD⊥y軸于點(diǎn)D.求四邊形ABCD面積的最小值,并說(shuō)明此時(shí)四邊形ABCD的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線y=x2+(m﹣2)x﹣2m(m>0)與x軸交于A、B兩點(diǎn)(A在B左邊),與y軸交于點(diǎn)C.連接AC、BC,D為拋物線上一動(dòng)點(diǎn)(D在B、C兩點(diǎn)之間),OD交BC于E點(diǎn).
(1)若△ABC的面積為8,求m的值;
(2)在(1)的條件下,求的最大值;
(3)如圖2,直線y=kx+b與拋物線交于M、N兩點(diǎn)(M不與A重合,M在N左邊),連MA,作NH⊥x軸于H,過(guò)點(diǎn)H作HP∥MA交y軸于點(diǎn)P,PH交MN于點(diǎn)Q,求點(diǎn)Q的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形紙片,是的中點(diǎn),是上一動(dòng)點(diǎn),沿折疊,點(diǎn)落在點(diǎn)處;延長(zhǎng)交于點(diǎn),連接.
(1)求證:≌;
(2)當(dāng)時(shí),將沿折疊,點(diǎn)落在線段上點(diǎn)處.
①求證:∽;
②如果,,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com