【題目】如圖1,拋物線yx2+(m2x2mm0)與x軸交于AB兩點(diǎn)(AB左邊),與y軸交于點(diǎn)C.連接AC、BC,D為拋物線上一動(dòng)點(diǎn)(DBC兩點(diǎn)之間),ODBCE點(diǎn).

1)若△ABC的面積為8,求m的值;

2)在(1)的條件下,求的最大值;

3)如圖2,直線ykx+b與拋物線交于MN兩點(diǎn)(M不與A重合,MN左邊),連MA,作NHx軸于H,過點(diǎn)HHPMAy軸于點(diǎn)P,PHMN于點(diǎn)Q,求點(diǎn)Q的橫坐標(biāo).

【答案】(1)m=2;(2);(3) Q點(diǎn)的橫坐標(biāo)為2.

【解析】

1)解方程x2+(m2x2m=0求出拋物線與x軸的交點(diǎn),再令x=0,求出拋物線與y軸的交點(diǎn),然后根據(jù)ABC的面積為8,列方程求解即可;

2)過點(diǎn)DDFy軸交BCF,求出點(diǎn)B、點(diǎn)C的坐標(biāo),用待定系數(shù)法求出直線BC的解析式,表示出DF的長(zhǎng),利用平行線分線段成比例定理列出關(guān)于的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)即可求出結(jié)論;

3)設(shè)M(x1,kx1b)、N(x2,kx2b),聯(lián)立一次函數(shù)與二次函數(shù)關(guān)系式,整理可得x1x22kmx1x2=-2mb. 過點(diǎn)MMKx軸于K,過點(diǎn)QQLx軸于L,由MKA∽△QLH,列比利式整理可得(kmb)(n2)0,然后分兩種情況討論可得點(diǎn)Q的橫坐標(biāo).

(1) yx2(m2)x2m(xm)(x2),

y0,則(xm)(x2)0,解得x1=-m,x22,

A(m,0)、B(20),

x0,則y=-2m,

C(0,-2m)

AB2m,OC2m.

SABC×(2m)×2m8

解得m12,m2=-4,

m0,

m2

(2) 過點(diǎn)DDFy軸交BCF,

(1)可知:m2,

拋物線的解析式為yx24

B(2,0)、C(0,-4)

直線BC的解析式為y2x4.

設(shè)D(t,t24),則F(t,2t4)

DF2t4(t24)=-t22t,OC4

DFy軸,

=-(t1)2,

當(dāng)t1時(shí),有最大值為,此時(shí)D(1,3);

(3) 設(shè)M(x1,kx1b)N(x2,kx2b)

聯(lián)立,整理得x2(m2k)x2mb0

x1x22km,x1x2=-2mb

設(shè)點(diǎn)Q的橫坐標(biāo)為n,則Q(n,knb)

過點(diǎn)MMKx軸于K,過點(diǎn)QQLx軸于L,

MAPH,

MKA∽△QLH,

,

,整理得kx1x2b(x1x2)kmnbmbn0,

k(2mb)b(2km)kmnbmbn0,

∴(kmb)(n2)0,

kmb0,此時(shí)直線為yk(xm),過點(diǎn)A(m,0),不符合題意,

當(dāng)n20,此時(shí)n2,Q點(diǎn)的橫坐標(biāo)為2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(jí)(1)班50名學(xué)生需要參加體育“五選一”自選項(xiàng)目測(cè)試,班上學(xué)生所報(bào)自選項(xiàng)目的情況統(tǒng)計(jì)如表所示:

自選項(xiàng)目

人數(shù)

頻率

立定跳遠(yuǎn)

b

0.18

三級(jí)蛙跳

12

0.24

一分鐘跳繩

8

a

投擲實(shí)心球

16

0.32

推鉛球

5

0.10

合計(jì)

50

1

1)求a,b的值;

2)若該校九年級(jí)共有400名學(xué)生,試估計(jì)年級(jí)選擇“一分鐘跳繩”項(xiàng)目的總?cè)藬?shù);

3)在選報(bào)“推鉛球”的學(xué)生中,有3名男生,2名女生,為了了解學(xué)生的訓(xùn)練效果,從這5名學(xué)生中隨機(jī)抽取兩名學(xué)生進(jìn)行推鉛球測(cè)試,求所抽取的兩名學(xué)生中至少有一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校運(yùn)動(dòng)會(huì)的立定跳遠(yuǎn)和1分鐘跳繩兩個(gè)單項(xiàng)比賽分成預(yù)賽和決賽兩個(gè)階段.下表為參加這兩項(xiàng)比賽的10名學(xué)生的預(yù)賽成績(jī):

學(xué)生編號(hào)

成績(jī)

項(xiàng)目

3104

3508

3115

3406

3317

3413

3218

3307

3519

3210

立定跳遠(yuǎn)(單位:米)

1.96

1.92

1.82

1.80

1.78

1.76

1.74

1.72

1.68

1.60

1分鐘跳繩(單位:次)

163

175

160

163

172

170

165

在這10名學(xué)生中,同時(shí)進(jìn)入兩項(xiàng)決賽的只有6人,進(jìn)入立定跳遠(yuǎn)決賽的有8人,如果知道在同時(shí)進(jìn)入兩項(xiàng)決賽的6人中有“3508號(hào)”學(xué)生,沒有“3307號(hào)”學(xué)生,那么的值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在反比例函數(shù)的圖象上有一動(dòng)點(diǎn),連接并延長(zhǎng)交圖象的另一支于點(diǎn),在第二象限內(nèi)有一點(diǎn),滿足,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),點(diǎn)始終在函數(shù)的圖象上運(yùn)動(dòng),若,則的值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰RtABC和⊙O如圖放置,已知AB=BC=1,ABC=90°,O的半徑為1,圓心O與直線AB的距離為5.

(1)若ABC以每秒2個(gè)單位的速度向右移動(dòng),⊙O不動(dòng),則經(jīng)過多少時(shí)間ABC的邊與圓第一次相切?

(2)若兩個(gè)圖形同時(shí)向右移動(dòng),ABC的速度為每秒2個(gè)單位,⊙O的速度為每秒1個(gè)單位,則經(jīng)過多少時(shí)間ABC的邊與圓第一次相切?

(3)若兩個(gè)圖形同時(shí)向右移動(dòng),ABC的速度為每秒2個(gè)單位,⊙O的速度為每秒1個(gè)單位,同時(shí)ABC的邊長(zhǎng)AB、BC都以每秒0.5個(gè)單位沿BA、BC方向增大.ABC的邊與圓第一次相切時(shí),點(diǎn)B運(yùn)動(dòng)了多少距離?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長(zhǎng)一定的正方形ABCD,Q是CD上一動(dòng)點(diǎn),AQ交BD于點(diǎn)M,過M作MN⊥AQ交BC于N點(diǎn),作NP⊥BD于點(diǎn)P,連接NQ,下列結(jié)論:①AM=MN;

②MP=BD;③BN+DQ=NQ;④為定值。其中一定成立的是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形的邊長(zhǎng)是,點(diǎn)分別在邊上,,垂足為.把沿折疊得到,若恰為等腰角形,則的長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=1,點(diǎn)EF分別在邊BCCD上,AEAF,∠EAF=60°,則CF的長(zhǎng)是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,點(diǎn)D,E分別是邊ABAC上的點(diǎn),DEBC,點(diǎn)H是邊BC上的點(diǎn),連接AH交線段DE于點(diǎn)G,且BHDE12,DG8,SADG12,則S四邊形BCED=(  )

A.24B.22.5C.20D.25

查看答案和解析>>

同步練習(xí)冊(cè)答案