【題目】如圖,在△ABC 中,∠ABC=90°,∠C=30°,AC 的垂直平分線(xiàn)交 BC 于點(diǎn) D,交AC 于點(diǎn) E.
(1)判斷 BE 與△DCE 的外接圓⊙O 的位置關(guān)系,并說(shuō)明理由;
(2)若 BE=,BD=1,求△DCE 的外接圓⊙O 的直徑.
【答案】(1)見(jiàn)解析;(2)△DCE的外接圓的直徑是2.
【解析】
(1)連接OE,由DE是AC的垂直平分線(xiàn),得到BE=CE,根據(jù)等腰三角形的性質(zhì)得到∠EBC=∠C=30°,由三角形的內(nèi)角和得到∠BEC=120°,由OE=OC,得到∠OEC=∠C=30°,求得∠BEO=90°,根據(jù)切線(xiàn)的判定定理即可得到結(jié)論;
(2)根據(jù)切割線(xiàn)定理得到BE2=BDBC,代入數(shù)據(jù)即可得到結(jié)論.
(1)連接OE,
∵DE是AC的垂直平分線(xiàn),
∴BE=CE,
∴∠EBC=∠C=30°,
∴∠BEC=120°,
∵OE=OC,
∴∠OEC=∠C=30°,
∴∠BEO=90°,
∴BE是⊙O的切線(xiàn);
(2)∵BE是⊙O的切線(xiàn),
∴BE2=BDBC,
即()2=1BC,
∴BC=3,
∴CD=2,
∴△DCE的外接圓的直徑是2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有點(diǎn)A(﹣4,0)、B(0,3)、P(a,﹣a)三點(diǎn),線(xiàn)段CD與AB關(guān)于點(diǎn)P中心對(duì)稱(chēng),其中A、B的對(duì)應(yīng)點(diǎn)分別為C、D
(1)當(dāng)a=﹣4時(shí)
①在圖中畫(huà)出線(xiàn)段CD,保留作圖痕跡
②線(xiàn)段CD向下平移 個(gè)單位時(shí),四邊形ABCD為菱形;
(2)當(dāng)a= 時(shí),四邊形ABCD為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=ax2+bx(a≠0)過(guò)點(diǎn)A(,﹣3)和點(diǎn)B(3,0).過(guò)點(diǎn)A作直線(xiàn)AC∥x軸,交y軸于點(diǎn)C.
(1)求拋物線(xiàn)的解析式;
(2)在拋物線(xiàn)上取一點(diǎn)P,過(guò)點(diǎn)P作直線(xiàn)AC的垂線(xiàn),垂足為D.連接OA,使得以A,D,P為頂點(diǎn)的三角形與△AOC相似,求出對(duì)應(yīng)點(diǎn)P的坐標(biāo);
(3)拋物線(xiàn)上是否存在點(diǎn)Q,使得S△AOC=S△AOQ?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方體的長(zhǎng)為15,寬為10,高為20,點(diǎn)B離點(diǎn)C的距離為5,一只螞蟻如果要沿著長(zhǎng)方體的表面從點(diǎn)A爬到點(diǎn)B,需要爬行的最短距離是( 。
A.5B.25C.10+5D.35
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了測(cè)量校園內(nèi)一棵不可攀的樹(shù)的高度,學(xué)校數(shù)學(xué)應(yīng)用實(shí)踐小組做了如下的探索:根據(jù)光的反射定律,利用一面鏡子和皮尺,設(shè)計(jì)如圖所示的測(cè)量方案:把鏡子放在離樹(shù)AB的樹(shù)根7.2m的點(diǎn)E處,然后觀測(cè)者沿著直線(xiàn)BE后退到點(diǎn)D,這時(shí)恰好在鏡子里看到樹(shù)梢頂點(diǎn)A,再用皮尺量得DE=2.4m,觀測(cè)者目高CD=1.6m,則樹(shù)高AB約是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中建立平面直角坐標(biāo)系,已知△ABC三個(gè)頂點(diǎn)分別為A(﹣1,2)、B(2,1)、C(4,5).
(1)畫(huà)出△ABC關(guān)于x對(duì)稱(chēng)的△A1B1C1;
(2)以原點(diǎn)O為位似中心,在x軸的上方畫(huà)出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2,并求出△A2B2C2的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:直線(xiàn),為圖形內(nèi)一點(diǎn),連接,.
(1)如圖①,寫(xiě)出,,之間的等量關(guān)系,并證明你的結(jié)論;
(2)如圖②,請(qǐng)直接寫(xiě)出,,之間的關(guān)系式;
(3)你還能就本題作出什么新的猜想?請(qǐng)畫(huà)圖并寫(xiě)出你的結(jié)論(不必證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD的對(duì)角線(xiàn)、交于點(diǎn),順次聯(lián)結(jié)ABCD各邊中點(diǎn)得到的一個(gè)新的四邊形,如果添加下列四個(gè)條件中的一個(gè)條件:①⊥;②;③;④,可以使這個(gè)新的四邊形成為矩形,那么這樣的條件個(gè)數(shù)是()
A. 1個(gè);B. 2個(gè);
C. 3個(gè);D. 4個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2+ax+a-2=0.
(1)求證:不論a取何實(shí)數(shù),該方程都有兩個(gè)不相等的實(shí)數(shù)根;
(2)若該方程的一個(gè)根為1,求a的值及該方程的另一根.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com