【題目】已知:拋物線,經(jīng)過點A(-1,-2),B(0,1).

1)求拋物線的關系式及頂點P的坐標.

2)若點B′與點B關于x軸對稱,把(1)中的拋物線向左平移m個單位,平移后的拋物線經(jīng)過點B′,設此時拋物線頂點為點P′.

①求∠P′B B′的大小.

②把線段P′B′以點B′為旋轉中心順時針旋轉120°,點P′落在點M處,設點N在(1)中的拋物線上,當△MN B′的面積等于6時,求點N的坐標.

【答案】1,頂點坐標;(2)①,②當時,點的坐標為.

【解析】

1)把點A-1-2B0,1)代入即可求出解析式;(2)①設拋物線平移后為,代入點B’(0,-1)即可求出m,得出頂點坐標

,連結,P’B’,作P’Hy軸,垂足為,得,HB=1P’B=2

求出, ,故可得的度數(shù)

②根據(jù)題意作出圖形,根據(jù)旋轉的性質與,解得三角形的高;故設分別代入即可求出N的坐標.

1)把點A-1,-2B0,1)代入解得

∴拋物線的關系式為:

y=-(x-1)2;

∴頂點坐標為.

2)①設拋物線平移后為,代入點B’(0,-1)得,-1=-(m-1)2+2解得,(舍去);

,得頂點

連結P’B’,作P’Hy軸,垂足為,得,HB=1,P’B==2

,

,

.

②∵,,

;

∵線段以點為旋轉中心順時針旋轉,點落在點;

,

軸,;

邊上的高為,得:,解得;

∴設分別代入解得:,方程無實數(shù)根舍去,

∴綜上所述:當時,點的坐標為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,,,,點EAB邊上一點,且.點FBC邊上的一個動點(與點B、點C不重合),點G在射線CD上,且.設BF的長為x,CG的長為y

1)當點G在線段DC上時,求yx之間的函數(shù)關系式,并寫出自變量x的取值范圍;

2)當以點B為圓心,BF長為半徑的⊙B與以點C為圓心,CG長為半徑的⊙C相切時,求線段BF的長;

3)當為等腰三角形時,直接寫出線段BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形AOBC是正方形,點C的坐標是(4,0).

(Ⅰ)正方形AOBC的邊長為   ,點A的坐標是   

(Ⅱ)將正方形AOBC繞點O順時針旋轉45°,點A,BC旋轉后的對應點為A′,B′,C′,求點A′的坐標及旋轉后的正方形與原正方形的重疊部分的面積;

(Ⅲ)動點P從點O出發(fā),沿折線OACB方向以1個單位/秒的速度勻速運動,同時,另一動點Q從點O出發(fā),沿折線OBCA方向以2個單位/秒的速度勻速運動,運動時間為t秒,當它們相遇時同時停止運動,當△OPQ為等腰三角形時,求出t的值(直接寫出結果即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC為直角三角形,∠C=90°,BC=2cm,A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點C、B、E、F在同一條直線上,點B與點E重合.RtABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當點C與點F重合時停止.設RtABC與矩形DEFG的重疊部分的面積為ycm2,運動時間xs.能反映ycm2xs之間函數(shù)關系的大致圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點A(3,0),B(2,﹣3),并且以x=1為對稱軸.

(1)求此函數(shù)的解析式;

(2)作出二次函數(shù)的大致圖象;

(3)在對稱軸x=1上是否存在一點P,使△PABPA=PB?若存在,求出P點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,以BC為直徑的⊙OAC于點E,過點EAB的垂線交AB于點F,交CB的延長線于點G,且∠ABG=2C.

(1)求證:EG是⊙O的切線;

(2)若tanC=,AC=8,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角角坐標系中,直線與雙曲線交于A,C兩點,ABOAx軸于點B,且OA=AB

1)求雙曲線的解析式;

2)求點C的坐標,并直接寫出關于x的不等式解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:如果兩個正數(shù)a,b,即a0,b0,有下面的不等式:,當且僅當ab時取到等號我們把叫做正數(shù)a,b的算術平均數(shù),把叫做正數(shù)a,b的幾何平均數(shù),于是上述不等式可表述為:兩個正數(shù)的算術平均數(shù)不小于(即大于或等于)它們的幾何平均數(shù).它在數(shù)學中有廣泛的應用,是解決最值問題的有力工具.

初步探究:(1)已知x0,求函數(shù)yx+的最小值.

問題遷移:(2)學校準備以圍墻一面為斜邊,用柵欄圍成一個面積為100m2的直角三角形,作為英語角,直角三角形的兩直角邊各為多少時,所用柵欄最短?

創(chuàng)新應用:(3)如圖,在直角坐標系中,直線AB經(jīng)點P3,4),與坐標軸正半軸相交于A,B兩點,當△AOB的面積最小時,求△AOB的內(nèi)切圓的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是小明設計的作三角形的高線的尺規(guī)作圖過程.

已知:ABC

求作:BC邊上的高線.

作法:如圖,

①以點C為圓心,CA為半徑畫。

②以點B為圓心,BA為半徑畫弧,兩弧相交于點D

③連接AD,交BC的延長線于點E

所以線段AE就是所求作的BC邊上的高線.

根據(jù)小明設計的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

2)完成下面證明.

證明:∵CA=CD,

∴點C在線段AD的垂直平分線上( (填推理的依據(jù)).

=

∴點B在線段AD的垂直平分線上.

BC是線段AD的垂直平分線.

ADBC

AE就是BC邊上的高線.

查看答案和解析>>

同步練習冊答案