【題目】已知;如圖,在△ABC中,ABBC,∠ABC90度.FAB延長線上一點(diǎn),點(diǎn)EBC上,BEBF,連接AE、EFCF

1)求證:AECF;(2)若∠CAE30°,求∠EFC的度數(shù).

【答案】1)見解析;(2)∠EFC=30°.

【解析】

1)根據(jù)已知利用SAS判定ABE≌△CBF,由全等三角形的對應(yīng)邊相等就可得到AE=CF;(2)根據(jù)已知利用角之間的關(guān)系可求得∠EFC的度數(shù).

1)證明:在ABECBF中,

∴△ABE≌△CBFSAS).

AECF

2)解:∵ABBC,∠ABC90°,∠CAE30°,

∴∠CAB=∠ACB180°90°)=45°,∠EAB45°30°15°

∵△ABE≌△CBF,

∴∠EAB=∠FCB15°

BEBF,∠EBF90°,

∴∠BFE=∠FEB45°

∴∠EFC180°90°15°45°30°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,設(shè)點(diǎn)P到原點(diǎn)O的距離為ρOPx軸正方向的夾角為α,則用[ρ,α]表示點(diǎn)P的極坐標(biāo),例如:點(diǎn)P的坐標(biāo)為(1,1),則其極坐標(biāo)為[,45°].若點(diǎn)Q的極坐標(biāo)為[4,120°],則點(diǎn)Q的坐標(biāo)為(  )

A. (-2,2) B. (2,-2) C. (-2,-2) D. (-4,-4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=4 cm,AC=2 cm.

(1)AB上取一點(diǎn)D,當(dāng)AD=_________cm時,△ACD∽△ABC.

(2)AC的延長線上取一點(diǎn)E,當(dāng)CE=________cm時,△AEB∽△ABC此時BEDC有怎樣的位置關(guān)系?________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若直線經(jīng)過點(diǎn),直線經(jīng)過點(diǎn),且關(guān)于軸對稱,則的交點(diǎn)坐標(biāo)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC底邊BC的長為4,面積為12,腰AB的垂直平分線EFAB于點(diǎn)E,交AC于點(diǎn)F.DBC邊的中點(diǎn),M為線段EF上一個動點(diǎn),則BDM的周長的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P,Q是直線y=﹣上的兩點(diǎn),PQ的左側(cè),且滿足OPOQ,OPOQ,則點(diǎn)P的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)的頂點(diǎn),的坐標(biāo)分別為

1)請?jiān)谌鐖D所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;

2)點(diǎn)軸的距離是   ;

3)請作出關(guān)于軸對稱的;

4)寫出點(diǎn)的坐標(biāo)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】天津市奧林匹克中心體育場—“水滴位于天津市西南部的奧林匹克中心內(nèi),某校九年級學(xué)生由距水滴”10千米的學(xué)校出發(fā)前往參觀,一部分同學(xué)騎自行車先走,過了20分鐘后,其余同學(xué)乘汽車出發(fā),結(jié)果他們同時到達(dá).已知汽車的速度是騎車同學(xué)速度的2倍,求騎車同學(xué)的速度.

1)設(shè)騎車同學(xué)的速度為x千米/時,利用速度、時間、路程之間的關(guān)系填寫下表.(要求:填上適當(dāng)?shù)拇鷶?shù)式,完成表格)

速度(千米/時)

所用時間(時)

所走的路程(千米)

騎自行車

x

10

乘汽車

10

2)列出方程(組),并求出問題的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的斜邊ABx軸上,點(diǎn)Cy軸上,∠ACB=90°,OC、OB的長分別是一元二次方程x2﹣6x+8=0的兩個根,且OCOB.

(1)求點(diǎn)A的坐標(biāo);

(2)D是線段AB上的一個動點(diǎn)(點(diǎn)D不與點(diǎn)A,B重合),過點(diǎn)D的直線ly軸平行,直線l交邊AC或邊BC于點(diǎn)P,設(shè)點(diǎn)D的橫坐標(biāo)為t,線段DP的長為d,求d關(guān)于t的函數(shù)解析式;

(3)在(2)的條件下,當(dāng)d=時,請你直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案