【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù)且a≠0)的圖象如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y= 的圖象可能是(  )

A.
B.
C.
D.

【答案】C
【解析】解:由二次函數(shù)y=ax2+bx+c的圖象可知,a>0,b<0,c<0,
則一次函數(shù)y=ax+b的圖象經(jīng)過第一、三、四象限,
反比例函數(shù)y= 的圖象在二四象限,
故選C.
【考點精析】解答此題的關(guān)鍵在于理解一次函數(shù)的圖象和性質(zhì)的相關(guān)知識,掌握一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠,以及對反比例函數(shù)的圖象的理解,了解反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】太陽能光伏建筑是現(xiàn)代綠色環(huán)保建筑之一,老張準備把自家屋頂改建成光伏瓦面,改建前屋頂截面△ABC如圖2所示,BC=10米,∠ABC=∠ACB=36°,改建后頂點D在BA的延長線上,且∠BDC=90°,求改建后南屋面邊沿增加部分AD的長.(結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+2x+6(a≠0)交x軸與A,B兩點(點A在點B左側(cè)),將直尺WXYZ與x軸負方向成45°放置,邊WZ經(jīng)過拋物線上的點C(4,m),與拋物線的另一交點為點D,直尺被x軸截得的線段EF=2,且△CEF的面積為6.

(1)求該拋物線的解析式;
(2)探究:在直線AC上方的拋物線上是否存在一點P,使得△ACP的面積最大?若存在,請求出面積的最大值及此時點P的坐標;若不存在,請說明理由.
(3)將直尺以每秒2個單位的速度沿x軸向左平移,設平移的時間為t秒,平移后的直尺為W′X′Y′Z′,其中邊X′Y′所在的直線與x軸交于點M,與拋物線的其中一個交點為點N,請直接寫出當t為何值時,可使得以C、D、M、N為頂點的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用大小相等的小正方形按一定規(guī)律拼成下列圖形,則第n個圖形中小正方形的個數(shù)是( 。

A.2n+1
B.n2﹣1
C.n2+2n
D.5n﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一艘輪船位于燈塔P南偏西60°方向,距離燈塔20海里的A處,它向東航行多少海里到達燈塔P南偏西45°方向上的B處(參考數(shù)據(jù): ≈1.732,結(jié)果精確到0.1)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果關(guān)于x的一元二次方程kx2﹣3x﹣1=0有兩個不相等的實根,那么k的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為加快城市群的建設與發(fā)展,在A,B兩城市間新建條城際鐵路,建成后,鐵路運行里程由現(xiàn)在的120km縮短至114km,城際鐵路的設計平均時速要比現(xiàn)行的平均時速快110km,運行時間僅是現(xiàn)行時間的
(1)求建成后的城際鐵路在A,B兩地的運行時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:
(1)( +1)0+|﹣2|﹣31
(2)解不等式組:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3cm,動點M從點B出發(fā)以3cm/s的速度沿著邊BC—CD—DA運動,到達點A停止運動,另一動點N同時從點B出發(fā),以1cm/s的速度沿著邊BA向點A運動,到達點A停止運動,設點M運動時間為x(s),△AMN的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案