【題目】某小區(qū)超市一段時間每天訂購面包進行銷售,每售出1個面包獲利潤0.5元,未售出的每個虧損0.3元.
(1)若該超市每天訂購面包80個,今后每天售出的面包個數(shù)用x(0<x≤80)表示,每天銷售面包的利潤用y(元)表示,請用含x的式子表示y;
(2)小明連續(xù)m天對該超市的面包銷量進行統(tǒng)計,并制成了頻數(shù)分布直方圖(每組含最小值,不含最大值)和扇形統(tǒng)計圖,如圖所示.請根據(jù)兩圖提供的信息計算在m天內(nèi)日銷售利潤少于32元的天數(shù).
【答案】(1) y=0.8x-24(0<x≤80);(2)在m天內(nèi)日銷售利潤少于32元的天數(shù)是9天.
【解析】
(1)根據(jù)總利潤=銷售時的盈利減去沒有銷售時的虧損即可求解;
(2)首先根據(jù)日銷售量是50﹣60的一組天數(shù)是3,然后除以對應的百分比即可求得m的值,然后根據(jù)銷售利潤小于32元即可求得銷售量的范圍,進而求解.
(1)y=0.5x-0.3(80-x),即y=0.8x-24(0<x≤80).
(2)m=3÷(1-50%-20%-20%)=30.
銷售利潤少于32元,則0.8x-24<32,解得:x<70.
日銷售利潤少于32元所占的百分比是1-50%-20%=30%,則在m天內(nèi)日銷售利潤少于32元的天數(shù)是30%m=30%×30=9(天).
科目:初中數(shù)學 來源: 題型:
【題目】已知,在中,,分別過、點作互相平行的直線、,過點的直線分別交直線、于點、.
(1);
① 若,直接寫出、的數(shù)量關系;
② 如圖1,與不垂直,判斷上述結(jié)論是否還成立,并說明理由;
(2)如圖2,,,,求.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司欲招聘一名公關人員,對甲、乙、丙、丁四位候選人進行了面試和筆試,他們的成績?nèi)绫恚?/span>
候選人 | 甲 | 乙 | 丙 | 丁 | |
測試成績 (百分制) | 面試 | 86 | 92 | 90 | 83 |
筆試 | 90 | 83 | 83 | 92 |
如果公司認為,作為公關人員面試的成績應該比筆試的成績更重要,并分別賦予它們和的權.根據(jù)四人各自的平均成績,公司將錄。ā 。
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P在雙曲線y= 上,以P為圓心的⊙P與兩坐標軸都相切,E為y軸負半軸上的一點,PF⊥PE交x軸于點F,則OF﹣OE的值是( )
A.6
B.5
C.4
D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,,,,若動點P從點C開始,按的路徑運動,且速度為每秒1cm,設出發(fā)的時間為t秒.
出發(fā)2秒后,求的面積;
當t為幾秒時,BP平分;
問t為何值時,為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題情境:如圖①,在△ABD與△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易證:△ABD≌△CAE.(不需要證明)
特例探究:如圖②,在等邊△ABC中,點D、E分別在邊BC、AB上,且BD=AE,AD與CE交于點F.求證:△ABD≌△CAE.
歸納證明:如圖③,在等邊△ABC中,點D、E分別在邊CB、BA的延長線上,且BD=AE.△ABD與△CAE是否全等?如果全等,請證明;如果不全等,請說明理由.
拓展應用:如圖④,在等腰三角形中,AB=AC,點O是AB邊的垂直平分線與AC的交點,點D、E分別在OB、BA的延長線上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為提升青少年的身體素質(zhì),深圳市在全市中小學推行“陽光體育”活動,某學校為滿足學生的需求,準備再購買一些籃球和足球.已知用800元購買籃球的個數(shù)比購買足球的個數(shù)少2個,足球的單價為籃球單價的 .
(1)求籃球、足球的單價分別為多少元?
(2)如果計劃用不多于5200元購買籃球、足球共60個 ,那么至少要購買多少個足球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】取一副三角板按如圖所示拼接,固定三角板ADC,將三角板ABC繞點A順時針方向旋轉(zhuǎn),旋轉(zhuǎn)角度為α(0°<α≤45°),得到△ABC′.
①當α為多少度時,AB∥DC?
②當旋轉(zhuǎn)到圖③所示位置時,α為多少度?
③連接BD,當0°<α≤45°時,探求∠DBC′+∠CAC′+∠BDC值的大小變化情況,并給出你的證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com