【題目】如圖,為⊙的直徑,,為圓上的兩點(diǎn),,弦,相交于點(diǎn),

1)求證:

2)若,,求⊙的半徑;

3)在(2)的條件下,過點(diǎn)作⊙的切線,交的延長線于點(diǎn),過點(diǎn)交⊙, 兩點(diǎn)(點(diǎn)在線段上),求的長.

【答案】1)見解析;(2)⊙的半徑為;(3.

【解析】

1)連接,根據(jù)圓心角的性質(zhì)即可求解;

2)根據(jù)圓的性質(zhì)求得,求出AC,再根據(jù)勾股定理進(jìn)行求解;

3)根據(jù),分線段成比例得,再求出PA,PO,過點(diǎn)于點(diǎn),則,求得根據(jù),即,求出OH,PH,連接,根據(jù)

中,由勾股定理,求得 ,由 進(jìn)行求解.

1)連接,

,

.

,

.

,

.

2)連接.

,

.

,

.

.

.

的直徑,

.

中,由勾股定理,得.

的半徑為.

3)如圖,設(shè)相交于點(diǎn)N.

的直徑,

,

.

的切線,

.

.

.

.

.

.

過點(diǎn)于點(diǎn),則,

,

.

,

.

連接.

中,由勾股定理,得

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,ADBC,BAADDC,點(diǎn)ECB延長線上,BEAD,連接AC、AE

求證:AEAC;

ABAC, FBC的中點(diǎn),試判斷四邊形AFCD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,AC,BC是⊙O的兩條弦,過點(diǎn)C作∠BCD=∠A,CDAB的延長線于點(diǎn)D

1)試說明:CD是⊙O的切線;

2)若tanA,求的值;

3)在(2)的條件下,若AB7,DE平分∠ADCAC于點(diǎn)E,求ED的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角△ABC中,AB4,BC5,∠ACB45°,將△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn),得到△A1BC1

1)如圖1,當(dāng)點(diǎn)C1在線段CA的延長線上時(shí),求∠CC1A1的度數(shù);

2)如圖2,連接AA1,CC1.若△ABA1的面積為16,求△CBC1的面積;

3)如圖3,點(diǎn)E為線段AB中點(diǎn),點(diǎn)P是線段AC上的動點(diǎn),在△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)過程中,點(diǎn)P的對應(yīng)點(diǎn)是點(diǎn)P1,求線段EP1長度的最大值與最小值之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形內(nèi)接于為直徑,

過點(diǎn)于點(diǎn)的延長線于點(diǎn),連接于點(diǎn)

求證: 的切線;

若點(diǎn)的中點(diǎn),求證:

,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市預(yù)測某飲料有發(fā)展前途,用1600元購進(jìn)一批飲料,面市后果然供不應(yīng)求,又用6000元購進(jìn)這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2.

(1)第一批飲料進(jìn)貨單價(jià)多少元?

(2)若二次購進(jìn)飲料按同一價(jià)格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價(jià)至少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉行了“防溺水”知識競賽,八年級兩個(gè)班選派10名同學(xué)參加預(yù)賽,依據(jù)各參賽選手的成績(均為整數(shù))繪制了統(tǒng)計(jì)表和折線統(tǒng)計(jì)圖(如圖所示).

(1)統(tǒng)計(jì)表中,a=________, b =________;

(2)若從兩個(gè)班的預(yù)賽選手中選四名學(xué)生參加決賽,其中兩個(gè)班的第一名直接進(jìn)入決賽,另外兩個(gè)名額 在成績?yōu)?/span>98分的學(xué)生中任選兩個(gè),求另外兩個(gè)決賽名額落在不同班級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)EF分別在矩形ABCD的邊ABBC上,連接EF,將BEF沿直線EF翻折得到HEF,AB8BC6,AEEB31

1)如圖1,當(dāng)∠BEF45°時(shí),EH的延長線交DC于點(diǎn)M,求HM的長;

2)如圖2,當(dāng)FH的延長線經(jīng)過點(diǎn)D時(shí),求tanFEH的值;

3)如圖3,連接AH,HC,當(dāng)點(diǎn)F在線段BC上運(yùn)動時(shí),試探究四邊形AHCD的面積是否存在最小值?若存在,求出四邊形AHCD的面積的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于二次函數(shù),有下列結(jié)論:①其圖象與x軸一定相交;②若,函數(shù)在時(shí),yx的增大而減小;③無論a取何值,拋物線的頂點(diǎn)始終在同一條直線上;④無論a取何值,函數(shù)圖象都經(jīng)過同一個(gè)點(diǎn).其中所有正確的結(jié)論是___.(填寫正確結(jié)論的序號)

查看答案和解析>>

同步練習(xí)冊答案