【題目】如圖,在平面直角坐標(biāo)系xoy中,直線(xiàn)與x 軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線(xiàn)y=ax2+bx+c的對(duì)稱(chēng)軸是且經(jīng)過(guò)A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B.
(1)①直接寫(xiě)出點(diǎn)B的坐標(biāo);②求拋物線(xiàn)解析式.
(2)若點(diǎn)P為直線(xiàn)AC上方的拋物線(xiàn)上的一點(diǎn),連接PA,PC.求△PAC的面積的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).
(3)拋物線(xiàn)上是否存在點(diǎn)M,過(guò)點(diǎn)M作MN垂直x軸于點(diǎn)N,使得以點(diǎn)A、M、N為頂點(diǎn)的三角形與△ABC相似?若存在,直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)①B(1,0)②(2)4,P(-2,3);(3)存在M1(0,2),M2(-3,2), M3(2,-3),M4(5,-18), 使得以點(diǎn) A、M、N為頂點(diǎn)的三角形與△ABC相似.
【解析】試題分析:(1)①先求的直線(xiàn)y=x+2與x軸交點(diǎn)的坐標(biāo),然后利用拋物線(xiàn)的對(duì)稱(chēng)性可求得點(diǎn)B的坐標(biāo);②設(shè)拋物線(xiàn)的解析式為y=y=a(x+4)(x﹣1),然后將點(diǎn)C的坐標(biāo)代入即可求得a的值;
(2)設(shè)點(diǎn)P、Q的橫坐標(biāo)為m,分別求得點(diǎn)P、Q的縱坐標(biāo),從而可得到線(xiàn)段PQ=-m2﹣2m,然后利用三角形的面積公式可求得S△PAC=×PQ×4,然后利用配方法可求得△PAC的面積的最大值以及此時(shí)m的值,從而可求得點(diǎn)P的坐標(biāo);
(3)首先可證明△ABC∽△ACO∽△CBO,然后分以下幾種情況分類(lèi)討論即可:①當(dāng)M點(diǎn)與C點(diǎn)重合,即M(0,2)時(shí),△MAN∽△BAC;②根據(jù)拋物線(xiàn)的對(duì)稱(chēng)性,當(dāng)M(﹣3,2)時(shí),△MAN∽△ABC; ④當(dāng)點(diǎn)M在第四象限時(shí),解題時(shí),需要注意相似三角形的對(duì)應(yīng)關(guān)系.
試題解析:(1)①y=x+2
當(dāng)x=0時(shí),y=2,當(dāng)y=0時(shí),x=﹣4,
∴C(0,2),A(﹣4,0),
由拋物線(xiàn)的對(duì)稱(chēng)性可知:點(diǎn)A與點(diǎn)B關(guān)于x=﹣對(duì)稱(chēng),
∴點(diǎn)B的坐標(biāo)為(1,0).
②∵拋物線(xiàn)y=ax2+bx+c過(guò)A(﹣4,0),B(1,0),
∴可設(shè)拋物線(xiàn)解析式為y=a(x+4)(x﹣1),
又∵拋物線(xiàn)過(guò)點(diǎn)C(0,2),
∴2=﹣4a
∴a=-
∴y=-x2-x+2.
(2)設(shè)P(m,-m2-m+2).
過(guò)點(diǎn)P作PQ⊥x軸交AC于點(diǎn)Q,
∴Q(m,m+2),
∴PQ=-m2-m+2﹣(m+2)
=-m2﹣2m,
∵S△PAC=×PQ×4,
=2PQ=﹣m2﹣4m=﹣(m+2)2+4,
∴當(dāng)m=﹣2時(shí),△PAC的面積有最大值是4,
此時(shí)P(﹣2,3).
(3)在Rt△AOC中,tan∠CAO=在Rt△BOC中,tan∠BCO=,
∴∠CAO=∠BCO,
∵∠BCO+∠OBC=90°,
∴∠CAO+∠OBC=90°,
∴∠ACB=90°,
∴△ABC∽△ACO∽△CBO,
如下圖:
①當(dāng)M點(diǎn)與C點(diǎn)重合,即M(0,2)時(shí),△MAN∽△BAC;
③ 根據(jù)拋物線(xiàn)的對(duì)稱(chēng)性,當(dāng)M(﹣3,2)時(shí),△MAN∽△ABC;
④ 當(dāng)點(diǎn)M在第四象限時(shí),設(shè)M(n,-n2-n+2),則N(n,0)
∴MN=n2+n﹣2,AN=n+4
當(dāng)時(shí),MN=AN,即n2+n﹣2=(n+4)
整理得:n2+2n﹣8=0
解得:n1=﹣4(舍),n2=2
∴M(2,﹣3);
當(dāng)時(shí),MN=2AN,即n2+n﹣2=2(n+4),
整理得:n2﹣n﹣20=0
解得:n1=﹣4(舍),n2=5,
∴M(5,﹣18).
綜上所述:存在M1(0,2),M2(﹣3,2),M3(2,﹣3),M4(5,﹣18),使得以點(diǎn)A、M、N為頂點(diǎn)的三角形與△ABC相似.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1為搭建在地面上的遮陽(yáng)棚,圖2、圖3是遮陽(yáng)棚支架的示意圖.遮陽(yáng)棚支架由相同的菱形和相同的等腰三角形構(gòu)成,滑塊E,H可分別沿等長(zhǎng)的立柱AB,DC上下移動(dòng),AF=EF=FG=1m.
(1)若移動(dòng)滑塊使AE=EF,求∠AFE的度數(shù)和棚寬BC的長(zhǎng).
(2)當(dāng)∠AFE由60°變?yōu)?/span>74°時(shí),問(wèn)棚寬BC是增加還是減少?增加或減少了多少?(結(jié)果精確到0.1m.參考數(shù)據(jù):≈1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某反比例函數(shù)圖象的一支經(jīng)過(guò)點(diǎn)A(2,3)和點(diǎn)B(點(diǎn)B在點(diǎn)A的右側(cè)),作BC⊥y軸,垂足為點(diǎn)C,連結(jié)AB,AC.
(1)求該反比例函數(shù)的解析式;
(2)若△ABC的面積為6,求直線(xiàn)AB的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一天早晨,小玲從家出發(fā)勻速步行到學(xué)校,小玲出發(fā)一段時(shí)間后,她的媽媽發(fā)現(xiàn)小玲忘帶了一件必需的學(xué)習(xí)用品,于是立即下樓騎自行車(chē),沿小玲行進(jìn)的路線(xiàn),勻速去追小玲,媽媽追上小玲將學(xué)習(xí)用品交給小玲后,立即沿原路線(xiàn)勻速返回家里,但由于路上行人漸多,媽媽返回時(shí)騎車(chē)的速度只是原來(lái)速度的一半,小玲繼續(xù)以原速度步行前往學(xué)校,媽媽與小玲之間的距離y(米)與小玲從家出發(fā)后步行的時(shí)間x(分)之間的關(guān)系如圖所示(小玲和媽媽上、下樓以及媽媽交學(xué)習(xí)用品給小玲耽擱的時(shí)間忽略不計(jì)).當(dāng)媽媽剛回到家時(shí),小玲離學(xué)校的距離為_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等腰△ABC的頂角∠A=36°(如圖).
(1)請(qǐng)用尺規(guī)作圖法作底角∠ABC的平分線(xiàn)BD,交AC于點(diǎn)D(保留作圖痕跡,不要求寫(xiě)作法);
(2)證明:△ABC∽△BDC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,對(duì)稱(chēng)軸為直線(xiàn)的拋物線(xiàn)經(jīng)過(guò),兩點(diǎn),拋物線(xiàn)與軸的另一交點(diǎn)為.
(1)求拋物線(xiàn)的解析式;
(2)若點(diǎn)為第一象限內(nèi)拋物線(xiàn)上一點(diǎn),設(shè)四邊形的面積為,求的最大值;
(3)若是線(xiàn)段上一動(dòng)點(diǎn),在軸上是否存在這樣的點(diǎn),使為等腰三角形且為直角三角形?若存在,求出點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線(xiàn)y=﹣x+3與x軸的一個(gè)交點(diǎn)為點(diǎn)A,與y軸的交點(diǎn)為點(diǎn)B,拋物線(xiàn)的對(duì)稱(chēng)軸l與x軸交于點(diǎn),與線(xiàn)段AB交于點(diǎn)E,點(diǎn)D是對(duì)稱(chēng)軸l上一動(dòng)點(diǎn).
(1)點(diǎn)A的坐標(biāo)是 ,點(diǎn)B的坐標(biāo)是 ;
(2)是否存在點(diǎn)D,使得△BDE和△ACE相似?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,拋物線(xiàn)的對(duì)稱(chēng)軸l向右平移與線(xiàn)段AB交于點(diǎn)F,與拋物線(xiàn)交于點(diǎn)G,當(dāng)四邊形DEFG是平行四邊形且周長(zhǎng)最大時(shí),求出點(diǎn)G的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn),與x軸交于兩點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(Ⅰ)求點(diǎn)A,B和點(diǎn)C的坐標(biāo);
(Ⅱ)已知P是線(xiàn)段上的一個(gè)動(dòng)點(diǎn).
①若軸,交拋物線(xiàn)于點(diǎn)Q,當(dāng)取最大值時(shí),求點(diǎn)P的坐標(biāo);
②求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD是正方形,PA是過(guò)正方形頂點(diǎn)A的直線(xiàn),作DE⊥PA于E,將射線(xiàn)DE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)45°與直線(xiàn)PA交于點(diǎn)F.
(1)如圖1,當(dāng)∠PAD=45°時(shí),點(diǎn)F恰好與點(diǎn)A重合,則的值為 ;
(2)如圖2,若45°<∠PAD<90°,連接BF、BD,試求的值,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com