【題目】如圖1,在平面直角坐標系中,拋物線y=﹣x+3x軸的一個交點為點A,與y軸的交點為點B,拋物線的對稱軸lx軸交于點,與線段AB交于點E,點D是對稱軸l上一動點.

1)點A的坐標是   ,點B的坐標是   

2)是否存在點D,使得△BDE和△ACE相似?若存在,請求出點D的坐標,若不存在,請說明理由;

3)如圖2,拋物線的對稱軸l向右平移與線段AB交于點F,與拋物線交于點G,當四邊形DEFG是平行四邊形且周長最大時,求出點G的橫坐標.

【答案】1)(6,0),(03);(2)存在,;(3G的橫坐標為

【解析】

1)令x0,則y3,令y0,則x6或﹣1,即可求解;

2)分∠BDE90、∠EBD90°、∠BED90°三種情況,分別求解即可;

3)列出四邊形的周長的函數(shù)表達式,即可求解.

解:(1)令x0,則y3,令y0,則x6或﹣1,

故點A、B的坐標分別為(6,0)、(0,3),

故答案為:(6,0);(03);

2)存在,理由如下:

對稱軸,則,

由點AB的坐標得,直線AB的解析式為,

時,,

,

當∠BDE90°時,

BDCA,

∴△BDE∽△ACE,

,

,

;

當∠EBDD2)=90°時,

∵∠EBD2=∠ACE90°,∠BED2=∠AEC,

∴△BED∽△CEA,

可知:;

同理:△BED1∽△D2BD1

,

,得D2D15,

;

當∠BED90°時,不合題意舍去.

綜上所述.

3)過點FFHCD于點H,

.

,

.

BOCD,

∴∠OBA=∠CEF,

∵∠BOA=∠EHF90°,

∴△BOA∽△EHF,,

,

,

設四邊形的周長為CDEFG,則,

a=﹣10

時平行四邊形周長最大,

G的橫坐標為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形的頂點與原點重合,頂點落在軸的正半軸上,對角線、交于點,點恰好都在反比例函數(shù)的圖象上,若,則的值為(  )

A.B.C.2D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:三角形一個內(nèi)角的平分線和與另一個內(nèi)角相鄰的外角平分線相交所成的銳角稱為該三角形第三個內(nèi)角的遙望角.

1)如圖1,∠E是△ABC中∠A的遙望角,若∠Aα,請用含α的代數(shù)式表示∠E

2)如圖2,四邊形ABCD內(nèi)接于⊙O,,四邊形ABCD的外角平分線DF⊙O于點F,連結BF并延長交CD的延長線于點E.求證:∠BEC是△ABC中∠BAC的遙望角.

3)如圖3,在(2)的條件下,連結AEAF,若AC⊙O的直徑.

求∠AED的度數(shù);

AB8,CD5,求△DEF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xoy中,直線與x 軸交于點A,與y軸交于點C.拋物線y=ax2+bx+c的對稱軸是且經(jīng)過A、C兩點,與x軸的另一交點為點B.

(1)①直接寫出點B的坐標;②求拋物線解析式.

(2)若點P為直線AC上方的拋物線上的一點,連接PA,PC.求△PAC的面積的最大值,并求出此時點P的坐標.

(3)拋物線上是否存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似?若存在,直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,點軸正半軸上一點,且,的面積是,則_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】漢江是長江最長的支流,在歷史上占居重要地位,陜西省境內(nèi)的漢江為漢江上游段.李琳利用熱氣球探測器測量漢江某段河寬,如圖,探測器在A處觀測到正前方漢江兩岸岸邊的BC兩點,并測得BC兩點的俯角分別為45°,30°已知A處離地面的高度為80m,河平面BC與地面在同一水平面上,請你求出漢江該段河寬BC(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形紙片的邊長為5,E是邊的中點,連接.沿折疊該紙片,使點B落在F點.則的長為______________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】時下娛樂綜藝節(jié)目風靡全國,隨機對九年級部分學生進行了一次調(diào)查,對最喜歡《我是喜劇王》(記為A)、《王牌對王牌》(記為B)、《奔跑吧,兄弟》(記為C)、《歡樂喜劇人》(記為D)的同學進行了統(tǒng)計(每位同學只選擇一個最喜歡的節(jié)目),繪制了以下不完整的統(tǒng)計圖,請根據(jù)圖中信息解答問題:

1)求本次調(diào)查一共選取了多少名學生;

2)將條形統(tǒng)計圖補充完整;

3)若九年級共有1900名學生,估計其中最喜歡《奔跑吧,兄弟》的學生大約是多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,經(jīng)過原點的拋物線與直線交于兩點,其對稱軸是直線,拋物線與軸的另一個交點為,線段軸交于點

1)求拋物線的解析式,并寫出點的坐標;

2)若點為線段上一點,且,點為線段上不與端點重合的動點,連接,過點作直線的垂線交軸于點,連接,探究在點運動過程中,線段,有何數(shù)量關系?并證明所探究的結論;

3)設拋物線頂點為,求當為何值時,為等腰三角形?

查看答案和解析>>

同步練習冊答案