【題目】如圖,平面直角坐標(biāo)系中,A(-2,1),B(-3,4),C(-1,3),過點(diǎn)(l,0)作x軸的垂線.
(1)作出△ABC關(guān)于直線的軸對稱圖形△;
(2)直接寫出A1(___,___),B1(___,___),C1(___,___);
(3)在△ABC內(nèi)有一點(diǎn)P(m,n),則點(diǎn)P關(guān)于直線的對稱點(diǎn)P1的坐標(biāo)為(___,___)(結(jié)果用含m,n的式子表示).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y1=﹣2x﹣3與y2=x+2.
(1)在同一平面直角坐標(biāo)系中,畫出這兩個(gè)函數(shù)的圖象;
(2)根據(jù)圖象,不等式﹣2x﹣3>x+2的解集為多少?
(3)求兩圖象和y軸圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y1=ax2+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)P在拋物線上,過P(1,﹣3),B(4,0)兩點(diǎn)作直線y2=kx+b.
(1)求a、c的值;
(2)根據(jù)圖象直接寫出y1>y2時(shí),x的取值范圍;
(3)在拋物線上是否存在點(diǎn)M,使得S△ABP=5S△ABM,若存在,求出點(diǎn)M的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等邊△ABC中,點(diǎn)P由點(diǎn)A出發(fā)沿CA方向運(yùn)動,同時(shí)點(diǎn)Q以相同的速度從點(diǎn)B出發(fā)沿BC方向運(yùn)動,當(dāng)點(diǎn)Q到達(dá)C點(diǎn)時(shí),P,Q兩點(diǎn)都停止運(yùn)動,連接PQ,交AB于點(diǎn)M.
(1)如圖①,當(dāng)PQ⊥BC時(shí),求證:AP=AM.
(2)如圖②,試說明:在點(diǎn)P和點(diǎn)Q運(yùn)動的過程中,PM=QM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知在△ABC中,∠ACB=90°,AC=BC=1,點(diǎn)D是AB上任意一點(diǎn),AE⊥AB,且AE=BD,DE與AC相交于點(diǎn)F.
(1)試判斷△CDE的形狀,并說明理由.
(2)是否存在點(diǎn)D,使AE=AF?如果存在,求出此時(shí)AD的長,如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】海南建省30年來,各項(xiàng)事業(yè)取得令人矚目的成就,以2016年為例,全省社會固定資產(chǎn)總投資約3730億元,其中包括中央項(xiàng)目、省屬項(xiàng)目、地(市)屬項(xiàng)目、縣(市)屬項(xiàng)目和其他項(xiàng)目.圖1、圖2分別是這五個(gè)項(xiàng)目的投資額不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請完成下列問題:
(1)在圖1中,先計(jì)算地(市)屬項(xiàng)目投資額為 億元,然后將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)在圖2中,縣(市)屬項(xiàng)目部分所占百分比為m%、對應(yīng)的圓心角為β,則m= ,β= 度(m、β均取整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某天然氣公司的主輸氣管道從市向北偏東方向直線延伸,測繪員在處測得要安裝天然氣的小區(qū)在市北偏東方向,測繪員沿主輸氣管道步行米到達(dá)處,測得小區(qū)位于的北偏西方向,請你在主輸氣管道上用尺規(guī)作圖的方法(不寫作法,保留作圖痕跡)找出支管道連接點(diǎn),使到該小區(qū)鋪設(shè)的管道最短,并求出的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C′處,折痕為EF,若∠EFC′=120°,那么∠ABE的度數(shù)為__________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法一定正確的是( )
A.所有的等邊三角形都是全等三角形
B.全等三角形是指形狀相同的兩個(gè)三角形
C.全等三角形是指面積相等的兩個(gè)三角形
D.全等三角形的周長和面積分別相等
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com