【題目】如圖,某工程隊(duì)在工地利用互相垂直的兩面墻AE、AF,另兩邊用鐵柵欄圍成一個(gè)長(zhǎng)方形場(chǎng)地ABCD,中間再用鐵柵欄分割成兩個(gè)長(zhǎng)方形,鐵柵欄總長(zhǎng)180米,已知墻AE長(zhǎng)90米,墻AF長(zhǎng)為60米.
設(shè)米,則CD為______米,四邊形ABCD的面積為______米;
若長(zhǎng)方形ABCD的面積為4000平方米,問BC為多少米?
【答案】(1),(2)米,長(zhǎng)方形的面積為4000平方米
【解析】
(1)根據(jù)鐵柵欄總長(zhǎng)為180米可得CD的長(zhǎng),再根據(jù)矩形的面積公式可得四邊形的面積;
(2)根據(jù)題意列出關(guān)于x的一元二次方程,解之求得x的值,再依據(jù)兩面墻的長(zhǎng)度取舍即可得.
(1)設(shè)BC=x米,則CD=(180﹣2x)米.四邊形ABCD的面積為x(180﹣2x)米2.
故答案為:(180﹣2x),x(180﹣2x);
(2)由題意,得:x(180﹣2x)=4000
整理,得:x2﹣90x+2000=0
解得:x=40或x=50.
當(dāng)x=40時(shí),180﹣2x=100>90,不符合題意,舍去;
當(dāng)x=50時(shí),180﹣2x=80<90,符合題意.
答:BC=50米,長(zhǎng)方形的面積為4000平方米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解答下列各題
(1)已知:如圖1,直線AB、CD被直線AC所截,點(diǎn)E在AC上,且∠A=∠D+∠CED,求證:AB∥CD;
(2)如圖2,在正方形ABCD中,AB=8,BE=6,DF=4.
①試判斷△AEF的形狀,并說明理由;
②求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題情境)如圖,Rt△ABC中,∠ACB=90°,CD⊥AB,我們可以利用△ABC與△ACD相似證明AC2=AD·AB,這個(gè)結(jié)論我們稱之為射影定理,試證明這個(gè)定理;
(結(jié)論運(yùn)用)如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)O是對(duì)角線AC、BD的交點(diǎn),點(diǎn)E在CD上,過點(diǎn)C作CF⊥BE,垂足為F,連接OF.
(1)試?yán)蒙溆岸ɡ碜C明△ABC∽△BED;
(2)若DE=2CE,求OF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校是乒乓球體育傳統(tǒng)項(xiàng)目學(xué)校,為進(jìn)一步推動(dòng)該項(xiàng)目的開展,學(xué)校準(zhǔn)備到體育用品店購買直拍球拍和橫拍球拍若干副,并且每買一副球拍必須要買10個(gè)乒乓球,乒乓球的單價(jià)為2元/個(gè),若購買20副直拍球拍和15副橫拍球拍花費(fèi)9000元;購買10副橫拍球拍比購買5副直拍球拍多花費(fèi)1600元.
(1)求兩種球拍每副各多少元?
(2)若學(xué)校購買兩種球拍共40副,且直拍球拍的數(shù)量不多于橫拍球拍數(shù)量的3倍,請(qǐng)你給出一種費(fèi)用最少的方案,并求出該方案所需費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,、、、各點(diǎn)的坐標(biāo)分別為、、、.
(1)在給出的圖形中,畫出四邊形關(guān)于軸對(duì)稱的四邊形,并寫出點(diǎn)和的坐標(biāo);
(2)在四邊形內(nèi)部畫一條線段將四邊形分割成兩個(gè)等腰三角形,并直接寫出兩個(gè)等腰三角形的面積差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,,,點(diǎn)、在軸上且關(guān)于軸對(duì)稱.
(1)求點(diǎn)的坐標(biāo);
(2)動(dòng)點(diǎn)以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)出發(fā)沿軸正方向向終點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,點(diǎn)到直線的距離的長(zhǎng)為,求與的關(guān)系式;
(3)在(2)的條件下,當(dāng)點(diǎn)到的距離為時(shí),連接,作的平分線分別交、于點(diǎn)、,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,對(duì)角線、交于點(diǎn),,,平分,過點(diǎn)作交的延長(zhǎng)線于點(diǎn),連接.
(1)求證:四邊形是菱形;
(2)若,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AN是⊙M的直徑,NB∥x軸,AB交⊙M于點(diǎn)C.
(1)若點(diǎn)A(0,6),N(0,2),∠ABN=30°,求點(diǎn)B的坐標(biāo);
(2)若D為線段NB的中點(diǎn),求證:直線CD是⊙M的切線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com