【題目】某廠家生產(chǎn)的一種新型節(jié)能燈,為了打開市場(chǎng)出臺(tái)了相關(guān)政策:由廠家協(xié)調(diào),廠家按成本價(jià)提供產(chǎn)品給經(jīng)營(yíng)戶自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由廠家承擔(dān).李明按照相關(guān)政策投資銷售本產(chǎn)品.已知這種節(jié)能燈的成本價(jià)為每件10元,出廠價(jià)為每件12元,每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系近似滿足一次函數(shù):y=﹣10x+500.
(1)李明在開始銷售的第一個(gè)月將銷售單價(jià)定為20元,那么廠家這個(gè)月為他承擔(dān)的總差價(jià)為多少元?
(2)設(shè)李明獲得的利潤(rùn)為w(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?
(3)物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得高于25元.如果李明想要每月獲得的利潤(rùn)不低于3000元,那么廠家為他承擔(dān)的總差價(jià)最少為多少元?
【答案】
(1)解:當(dāng)x=20時(shí),y=﹣10x+500=﹣10×20+500=300,
300×(12﹣10)=300×2=600元,
即政府這個(gè)月為他承擔(dān)的總差價(jià)為600元
(2)解:由題意得,w=(x﹣10)(﹣10x+500)
=﹣10x2+600x﹣5000
=﹣10(x﹣30)2+4000
∵a=﹣10<0,
∴當(dāng)x=30時(shí),w有最大值4000元.
即當(dāng)銷售單價(jià)定為30元時(shí),每月可獲得最大利潤(rùn)4000元
(3)解:由題意得:﹣10x2+600x﹣5000=3000,
解得:x1=20,x2=40.
∵a=﹣10<0,拋物線開口向下,
∴結(jié)合圖象可知:當(dāng)20≤x≤40時(shí),4000>w≥3000.
又∵x≤25,
∴當(dāng)20≤x≤25時(shí),w≥3000.
設(shè)政府每個(gè)月為他承擔(dān)的總差價(jià)為p元,
∴p=(12﹣10)×(﹣10x+500)
=﹣20x+1000.
∵k=﹣20<0.
∴p隨x的增大而減小,
∴當(dāng)x=25時(shí),p有最小值500元.
即銷售單價(jià)定為25元時(shí),政府每個(gè)月為他承擔(dān)的總差價(jià)最少為500元
【解析】(1)把x=20代入y=﹣10x+500求出銷售的件數(shù),然后求出政府承擔(dān)的成本價(jià)與出廠價(jià)之間的差價(jià);(2)由總利潤(rùn)=銷售量每件純賺利潤(rùn),得w=(x﹣10)(﹣10x+500),把函數(shù)轉(zhuǎn)化成頂點(diǎn)坐標(biāo)式,根據(jù)二次函數(shù)的性質(zhì)求出最大利潤(rùn);(3)令﹣10x2+600x﹣5000=3000,求出x的值,結(jié)合圖象求出利潤(rùn)的范圍,然后設(shè)政府每個(gè)月為他承擔(dān)的總差價(jià)為p元,根據(jù)一次函數(shù)的性質(zhì)求出總差價(jià)的最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+2與x軸交于點(diǎn)A(1,0)和B(4,0).
(1)求拋物線的解析式;
(2)若拋物線的對(duì)稱軸交x軸于點(diǎn)E,點(diǎn)F是位于x軸上方對(duì)稱軸上一點(diǎn),F(xiàn)C∥x軸,與對(duì)稱軸右側(cè)的拋物線交于點(diǎn)C,且四邊形OECF是平行四邊形,求點(diǎn)C的坐標(biāo);
(3)在(2)的條件下,拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△OCP是直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,BD、BE分別是高和角平分線,點(diǎn)F在CA的延長(zhǎng)線上,F(xiàn)H⊥BE,交BD于點(diǎn)G,交BC于點(diǎn)H;下列結(jié)論:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C,其中正確的結(jié)論有___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人參加操作技能培訓(xùn),他們?cè)谂嘤?xùn)期間參加的5次測(cè)試成績(jī)(滿分10分)記錄如下:
5次測(cè)試成績(jī)(分) | 平均數(shù) | 方差 | |||||
甲 | 8 | 8 | 7 | 8 | 9 | 8 | 0.4 |
乙 | 5 | 9 | 7 | 10 | 9 | 8 | 3.2 |
(1)若從甲、乙兩人中選派一人參加操作技能大賽,你認(rèn)為應(yīng)選誰?為什么?
(2)如果乙再測(cè)試一次,成績(jī)?yōu)?/span>8分,請(qǐng)計(jì)算乙6次測(cè)試成績(jī)的方差(結(jié)果保留小數(shù)點(diǎn)后兩位).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=kx+b交x軸于點(diǎn)A,交y軸于點(diǎn)B,直線y=2x﹣4交x軸于點(diǎn)D,與直線AB相交于點(diǎn)C(3,2).
(1)根據(jù)圖象,寫出關(guān)于x的不等式2x﹣4>x+b的解集;
(2)若點(diǎn)A的坐標(biāo)為(5,0),求直線AB的解析式;
(3)在(2)的條件下,求四邊形BODC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E是AD上的點(diǎn),點(diǎn)F是BC的延長(zhǎng)線上一點(diǎn),CF=DE,連結(jié)BE和EF,EF與CD交于點(diǎn)G,且∠FBE=∠FEB.
(1)過點(diǎn)F作FH⊥BE于點(diǎn)H,證明: = ;
(2)猜想:BE、AE、EF之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若DG=2,求AE值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)F、B、E、C在同一直線上,并且BF=CE,∠ABC=∠DEF.能否由上面的已知條件證明△ABC≌△DEF?如果能,請(qǐng)給出證明;如果不能,請(qǐng)從下列三個(gè)條件中選擇一個(gè)合適的條件,添加到已知條件中,使△ABC≌△DEF,并給出證明.
提供的三個(gè)條件是:①AB=DE;②AC=DF;③AC∥DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=AC,BD⊥AC于D,CE⊥AB于E,CE,BD相交于點(diǎn)O,則圖中全等的直角三角形有__對(duì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖的七邊形ABCDEFG中,AB、ED的延長(zhǎng)線相交于O點(diǎn).若圖中∠1、∠2、∠3、∠4的外角的角度和為220°,則∠BOD的度數(shù)是( 。
A. 400 B. 450 C. 500 D. 600
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com