【題目】如圖,AB為半圓O在直徑,AD、BC分別切⊙O于A、B兩點(diǎn),CD切⊙O于點(diǎn)E,連接OD、OC,下列結(jié)論:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2 , ④OD:OC=DE:EC,⑤OD2=DECD,正確的有(
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

【答案】C
【解析】解:連接OE,如圖所示:

∵AD與圓O相切,DC與圓O相切,BC與圓O相切,

∴∠DAO=∠DEO=∠OBC=90°,

∴DA=DE,CE=CB,AD∥BC,

∴CD=DE+EC=AD+BC,選項(xiàng)②正確;

在Rt△ADO和Rt△EDO中, ,

∴Rt△ADO≌Rt△EDO(HL),

∴∠AOD=∠EOD,

同理Rt△CEO≌Rt△CBO,

∴∠EOC=∠BOC,

又∠AOD+∠DOE+∠EOC+∠COB=180°,

∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,選項(xiàng)①正確;

∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,

∴△EDO∽△ODC,

= ,即OD2=DCDE,選項(xiàng)⑤正確;

∵∠AOD+∠COB=∠AOD+∠ADO=90°,

∠A=∠B=90°,

∴△AOD∽△BOC,

= = = ,選項(xiàng)③正確;

同理△ODE∽△OEC,

,選項(xiàng)④錯(cuò)誤;

故選C.

連接OE,由AD,DC,BC都為圓的切線,根據(jù)切線的性質(zhì)得到三個(gè)角為直角,且利用切線長定理得到DE=DA,CE=CB,由CD=DE+EC,等量代換可得出CD=AD+BC,選項(xiàng)②正確;由AD=ED,OD為公共邊,利用HL可得出直角三角形ADO與直角三角形EDO全等,可得出∠AOD=∠EOD,同理得到∠EOC=∠BOC,而這四個(gè)角之和為平角,可得出∠DOC為直角,選項(xiàng)①正確;由∠DOC與∠DEO都為直角,再由一對(duì)公共角相等,利用兩對(duì)對(duì)應(yīng)角相等的兩三角形相似,可得出三角形DEO與三角形DOC相似,由相似得比例可得出OD2=DECD,選項(xiàng)⑤正確;由△AOD∽△BOC,可得 = = = ,選項(xiàng)③正確;由△ODE∽△OEC,可得 ,選項(xiàng)④錯(cuò)誤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校課外興趣小組在本校學(xué)生中開展感動(dòng)中國2014年度人物先進(jìn)事跡知曉情況專題調(diào)查活動(dòng),采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,問卷調(diào)查的結(jié)果分為A、B、C、D四類.其中,A類表示非常了解”,B類表示比較了解”,C類表示基本了解”,D類表示不太了解,劃分類別后的數(shù)據(jù)整理如下表:

類別

A

B

C

D

頻數(shù)

30

40

24

b

頻率

a

0.4

0.24

0.06

(1)表中的a=________,b=________;

(2)根據(jù)表中數(shù)據(jù),求扇形統(tǒng)計(jì)圖中類別為B的學(xué)生數(shù)所對(duì)應(yīng)的扇形圓心角的度數(shù);

(3)若該校有學(xué)生1000名,根據(jù)調(diào)查結(jié)果估計(jì)該校學(xué)生中類別為C的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的袋子中裝有僅顏色不同的10個(gè)小球,其中紅球4個(gè),黑球6個(gè).
(1)先從袋子中取出m(m>1)個(gè)紅球,再從袋子中隨機(jī)摸出1個(gè)球,將“摸出黑球”記為事件A,請(qǐng)完成下列表格:

事件A

必然事件

隨機(jī)事件

m的值


(2)先從袋子中取出m個(gè)紅球,再放入m個(gè)一樣的黑球并搖勻,隨機(jī)摸出1個(gè)黑球的概率等于 ,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,Rt△AOB的兩條直角邊OA,OB分別在x軸的負(fù)半軸,y軸的負(fù)半軸上,且OA=2,OB=1.將Rt△AOB繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)90°,再把所得的像沿x軸正方向平移1個(gè)單位,得△CDO

1)寫出點(diǎn)A,B,C,D的坐標(biāo);

2)求點(diǎn)A和點(diǎn)C之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(1,0),C(3,1).

(1)畫出△ABC關(guān)于x軸對(duì)稱的△ABC′,并求出點(diǎn)A′、B′、C′的坐標(biāo)

(2)在坐標(biāo)平面內(nèi)是否存在點(diǎn)D使得△COD為等腰三角形?若存在直接寫出點(diǎn)D的坐標(biāo)找出滿足條件的兩個(gè)點(diǎn)即可);若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明爸爸裝修要粉刷斷居室的墻面,在家裝商場選購某品牌的乳膠漆:

規(guī)格(升/桶)

價(jià)格(元/桶)

大桶裝

18

225

小桶裝

5

90

小明爸估算家里的粉刷面積,若買大桶裝,則需若干桶但還差2升;若買小桶裝,則需多買11桶但會(huì)剩余1升,

1)小明爸預(yù)計(jì)墻面的粉刷需要乳膠漆多少升?

2)喜迎新年,商場進(jìn)行促銷:滿1000120元現(xiàn)金,并且該品牌商家對(duì)小桶裝乳膠漆有41“的促銷活動(dòng),小明爸打算購買小桶裝,比促銷前節(jié)省多少錢?

3)在(2)的條件下,商家在這次乳膠漆的銷售買賣中,仍可盈利25%,則小桶裝乳膠漆每桶的成本是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC為等腰直角三角形,∠BAC=90°,BC=2,E為AB上任意一動(dòng)點(diǎn),以CE為斜邊作等腰Rt△CDE,連接AD,下列說法:①∠BCE=∠ACD;②AC⊥ED;③△AED∽△ECB;④AD∥BC;⑤四邊形ABCD的面積有最大值,且最大值為 .其中,正確的結(jié)論是(
A.①②④
B.①③⑤
C.②③④
D.①④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 我們定義:如圖1、圖2、圖3,在ABC中,把AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)αα180°)得到AB,把AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)β得到AC,連接BC,當(dāng)α+β180°時(shí),我們稱AB'CABC旋補(bǔ)三角形,ABCB'C上的中線AD叫做ABC旋補(bǔ)中線,點(diǎn)A叫做旋補(bǔ)中心.圖1、圖2、圖3中的ABC均是ABC旋補(bǔ)三角形

1)①如圖2,當(dāng)ABC為等邊三角形時(shí),旋補(bǔ)中線ADBC的數(shù)量關(guān)系為:AD   BC

②如圖3,當(dāng)∠BAC90°BC8時(shí),則旋補(bǔ)中線AD長為   

2)在圖1中,當(dāng)ABC為任意三角形時(shí),猜想旋補(bǔ)中線ADBC的數(shù)量關(guān)系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長都是1,每個(gè)小正方形的頂點(diǎn)叫作格點(diǎn).ABC的三個(gè)頂點(diǎn)A,B,C都在格點(diǎn)上,將ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)90°得到ABC

1)在正方形網(wǎng)格中,畫出AB'C;

2)畫出ABC向左平移4格后的ABC;

3)計(jì)算線段AB在變換到AB的過程中掃過區(qū)域的面積.

查看答案和解析>>

同步練習(xí)冊答案