分析 河寬就是點C到AB的距離,因此過點C作CD⊥AB,垂足為D,根據(jù)AB=AD-BD=40米,通過解兩個直角三角形分別表示AD、BD的方程求解.
解答 解:過點C作CD⊥AB,垂足為D,
設(shè)CD=x米,
在Rt△BCD中,∠CBD=45°,
∴BD=CD=x米.
在Rt△ACD中,∠DAC=31°,
AD=AB+BD=(40+x)米,CD=x米,
∵tan∠DAC=$\frac{CD}{AD}$,
∴$\frac{x}{40+x}$=$\frac{3}{5}$,
解得x=60.
經(jīng)檢驗x=60是原方程的解,且符合題意.
點評 本題考查了解直角三角形,“化斜為直”是解三角形的基本思路,因此需作垂線(高)構(gòu)造直角三角形.
科目:初中數(shù)學 來源: 題型:選擇題
A. | -$\sqrt{2}$ | B. | -$\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com