【題目】如圖,AB是半圓直徑,半徑OCAB于點(diǎn)O,D為半圓上一點(diǎn),ACOD,AD與OC交于點(diǎn)E,連結(jié)CD、BD,給出以下三個(gè)結(jié)論:OD平分COB;BD=CD;CD2=CECO,其中正確結(jié)論的序號(hào)是

【答案】①②③

【解析】

試題分析:由OCAB就可以得出BOC=AOC=90°,再由OC=OA就可以得出OCA=OAC=45°,由ACOD就可以得出BOD=45°,進(jìn)而得出DOC=45°,從而得出OD平分COB.故正確;

BOD=COD即可得出BD=CD,正確;

AOC=90°就可以得出CDA=45°,得出DOC=CDA,就可以得出DOC∽△EDC.進(jìn)而得出,得出CD2=CE·CO.故正確.

故答案為:①②③

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,

如圖1,點(diǎn)DBC上,求證:,

將圖1中的繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)到圖2所示的位置,旋轉(zhuǎn)角為為銳角,線段DE,AEBD的中點(diǎn)分別為P,M,N,連接PM,PN

請(qǐng)直接寫(xiě)出線段PMPN之間的關(guān)系,不需證明;

,求

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某數(shù)學(xué)活動(dòng)小組選定測(cè)量小河對(duì)岸大樹(shù)BC的高度,他們?cè)谛逼?/span>AF上的D處測(cè)得大樹(shù)頂端B的仰角是30°,在地面上A處測(cè)得大樹(shù)頂端B的仰角是45°.若坡角∠FAE30°,AD6m,求大樹(shù)的高度.(結(jié)果保留整數(shù),參考數(shù)據(jù):1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為了測(cè)量?jī)蓚(gè)路燈之間的距離,小明在夜晚由路燈AB走向路燈CD,當(dāng)他走到點(diǎn)E時(shí),發(fā)現(xiàn)身后他頭頂部F的影子剛好接觸到路燈AB的底部A處,當(dāng)他向前再步行15m到達(dá)G點(diǎn)時(shí),發(fā)現(xiàn)身前他頭頂部H的影子剛好接觸到路燈CD的底部C處,已知小明同學(xué)的身高是1.7m,兩個(gè)路燈的高度都是8.5米,則AC=_____m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】即墨素有“中國(guó)針織名城”的美譽(yù),2016年,又被中國(guó)服裝協(xié)會(huì)授予“中國(guó)童裝名稱”的稱號(hào),該區(qū)一網(wǎng)店銷(xiāo)售某款童裝,當(dāng)每件售價(jià)80元時(shí),每周可賣(mài)200件,為了促銷(xiāo),該網(wǎng)店決定降價(jià)銷(xiāo)售.市場(chǎng)調(diào)查反映:每降價(jià)1元,每星期可多賣(mài)20件.已知該款童裝每件成本價(jià)60元,設(shè)該款童裝每件售價(jià)x(60≤x≤80)元,每周的銷(xiāo)售量為y件.

(1)求y與x之間的函數(shù)關(guān)系式;

(2)設(shè)每周的銷(xiāo)售利潤(rùn)為W元,當(dāng)每件售價(jià)定為多少元時(shí),每周的銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一張長(zhǎng)、寬之比為的矩形紙ABCD依次不斷對(duì)折,可得到的矩形紙BCFE,AEML,GMFH,LGPN.

(1)矩形BCFE,AEML,GMFHLGPN,長(zhǎng)和寬的比變了嗎?

(2)在這些矩形中,有成比例的線段嗎?

(3)你認(rèn)為這些大小不同的矩形相似嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,用下面的方法可以畫(huà)AOB的內(nèi)接等邊三角形,閱讀后解答相應(yīng)問(wèn)題.

畫(huà)法:①在AOB內(nèi)畫(huà)等邊三角形CDE,使點(diǎn)COA上,點(diǎn)DOB上;②連接OE并延長(zhǎng),交AB于點(diǎn)E′,過(guò)點(diǎn)E′E′C′EC,交OA于點(diǎn)C′,作E′D′ED,交OB于點(diǎn)D′;③連接C′D′,則C′D′E′AOB的內(nèi)接等邊三角形.

(1)求證:C′D′E′是等邊三角形;

(2)求作:內(nèi)接于已知ABC的矩形DEFG,使它的邊EFBC上,頂點(diǎn)D,G分別在ABAC上,且DEEF12.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BDABC的角平分線,點(diǎn)E、F分別在BC、AB上,且DEAB,∠DEF=∠A,EFBD相交于點(diǎn)M,以下結(jié)論:①△BDE是等腰三角形;②四邊形AFED是菱形;③BEAF;④若AFBF34,則DEM的面積:BAD的面積=949,以上結(jié)論正確的是(  )

A. ①②③④

B. ①③④

C. ①③

D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在RtABC中,∠ACB90°,AC10cmBC5cm,點(diǎn)P從點(diǎn)C出發(fā)沿線段CA以每秒2cm的速度運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)沿線段BC以每秒1cm的速度運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒(0t5).

1)填空:AB   cm

2t為何值時(shí),PCQACB相似;

3)如圖2,以PQ為斜邊在異于點(diǎn)C的一側(cè)作RtPEQ,且,連結(jié)CE,求CE.(用t的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案