如圖,一條拋物線經(jīng)過(guò)原點(diǎn)和點(diǎn)C(8,0),A、B是該拋物線上的兩點(diǎn),AB∥x軸,OA=5,AB=2.點(diǎn)E在線段OC上,作∠MEN=∠AOC,使∠MEN的一邊始終經(jīng)過(guò)點(diǎn)A,另一邊交線段BC于點(diǎn)F,連接AF.

(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)F是BC的中點(diǎn)時(shí),求點(diǎn)E的坐標(biāo);
(3)當(dāng)△AEF是等腰三角形時(shí),求點(diǎn)E的坐標(biāo).
(1)y=-x2x;(2)(,0);(3)(3,0)、(2,0)、(,0).

試題分析:(1)根據(jù)題意可設(shè)該拋物線的解析式為:y=ax(x-8)(a≠0).然后將點(diǎn)A或點(diǎn)B的坐標(biāo)代入求值即可;
(2)由相似三角形△AOE∽△ECF的對(duì)應(yīng)邊成比例求得線段OE的長(zhǎng)度,則易求點(diǎn)E的坐標(biāo);
(3)需要分類討論:當(dāng)AE=EF、AF=EF和AE=AF時(shí),分別求得點(diǎn)E的坐標(biāo).
試題解析:(1)拋物線中,AB∥OC,由對(duì)稱性可知有等腰梯形AOCB.
而OA=5,AB=2,OC=8
則A(3,4),B(5,4)
拋物線的解析式是y=-x2x
(2)可以證明△AOE∽△ECF
,不妨設(shè)E(x,0),其中0≤x≤8,
,整理得x2-8x+12.5=0,解得
從而點(diǎn)E的坐標(biāo)為(,0)
(3)由(2)中相似還可知AO:EC=AE:EF,若△AEF為等腰三角形,則有三種可能.

①當(dāng)EA=EF時(shí),有EC=AO=5,∴E(3,0)
②當(dāng)AE=AF時(shí),作AH⊥EF于H,有AE:EF=5:6
∴EC=AO=6,
∴E(2,0)
③當(dāng)FA=FE時(shí),同理可得AE:EF=6:5
∴EC=AO=
∴E(,0)
綜上所述,符合要求的點(diǎn)E有三個(gè).
考點(diǎn):二次函數(shù)綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

拋物線向左平移2個(gè)單位,再向下平移1個(gè)單位后得到的拋物線解析式是             .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)

(1)證明:不論取何值,該函數(shù)圖象與軸總有兩個(gè)公共點(diǎn);
(2)若該函數(shù)的圖象與軸交于點(diǎn)(0,5),求出頂點(diǎn)坐標(biāo),并畫(huà)出該函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=-x2+(m-1)x+m與y軸交于(0,3)點(diǎn),

(1)求出這條拋物線;
(2)求它與x軸的交點(diǎn)和拋物線頂點(diǎn)的坐標(biāo);
(3)x取什么值時(shí),拋物線在x軸上方?
(4)x取什么值時(shí),y的值隨x的增大而減。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

定義:把一個(gè)半圓與拋物線的一部分合成封閉圖形,我們把這個(gè)封閉圖形稱為“蛋圓”.如果一條直線與“蛋圓”只有一個(gè)交點(diǎn),那么這條直線叫做“蛋圓”的切線.如圖,A,B,C,D分別是“蛋圓”與坐標(biāo)軸的交點(diǎn),已知點(diǎn)D的坐標(biāo)為(0,8),AB為半圓的直徑,半圓的圓心M的坐標(biāo)為(1,0),半圓半徑為3.

(1)請(qǐng)你直接寫(xiě)出“蛋圓”拋物線部分的解析式          ,自變量的取值范圍是          
(2)請(qǐng)你求出過(guò)點(diǎn)C的“蛋圓”切線與x軸的交點(diǎn)坐標(biāo);
(3)求經(jīng)過(guò)點(diǎn)D的“蛋圓”切線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:關(guān)于的二次函數(shù)y=px2-(3p+2)x+2p+2(p>0)
(1)求證:無(wú)論p為何值時(shí),此函數(shù)圖象與x軸總有兩個(gè)交點(diǎn);
(2)設(shè)這兩個(gè)交點(diǎn)坐標(biāo)分別為(x1,0),(x2,0)(其中x1<x2)且S=x2-2x1,求S關(guān)于P的函數(shù)解析式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

二次函數(shù)y=x2-6x+n的部分圖象如圖所示,則它的對(duì)稱軸為 x=     

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知二次函數(shù)的圖象與x軸沒(méi)有交點(diǎn),則k的取值范圍為
A.k﹥-B.k≥-且k≠0
C.k﹤-D.k﹥-且k≠0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知拋物線和直線.我們約定:當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2,若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.下列判斷:①當(dāng)x>2時(shí),M=y2;②當(dāng)x<0時(shí),x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,則x=1.其中正確的有   (   )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案