如圖,已知拋物線和直線.我們約定:當(dāng)x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2,若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.下列判斷:①當(dāng)x>2時,M=y2;②當(dāng)x<0時,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,則x=1.其中正確的有   (   )
A.1個B.2個C.3個D.4個
B.

試題分析:∵當(dāng)y1=y2時,即時,解得:x=0或x=2,
∴由函數(shù)圖象可以得出當(dāng)x>2時, y2>y1;當(dāng)0<x<2時,y1>y2;當(dāng)x<0時, y2>y1. ∴①錯誤.
∵當(dāng)x<0時,直線的值都隨x的增大而增大,
∴當(dāng)x<0時,x值越大,M值越大. ∴②正確.
∵拋物線的最大值為4,∴M大于4的x值不存在. ∴③正確.
∵當(dāng)0<x<2時,y1>y2,∴當(dāng)M=2時,2x=2,x=1;
∵當(dāng)x>2時,y2>y1,∴當(dāng)M=2時,,解得(舍去).
∴使得M=2的x值是1或.∴④錯誤.
綜上所述,正確的有②③2個.故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在平面直角坐標(biāo)系中,Rt△OBC的兩條直角邊分別落在x軸、y軸上,且OB=1,OC=3,將△OBC繞原點(diǎn)O順時針旋轉(zhuǎn)90°得到△OAE,將△OBC沿y軸翻折得到△ODC,AE與CD交于點(diǎn)F.

(1)若拋物線過點(diǎn)A、B、C, 求此拋物線的解析式;
(2)求△OAE與△ODC重疊的部分四邊形ODFE的面積;
(3)點(diǎn)M是第三象限內(nèi)拋物線上的一動點(diǎn),點(diǎn)M在何處時△AMC的面積最大?最大面積是多少?求出此時點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一條拋物線經(jīng)過原點(diǎn)和點(diǎn)C(8,0),A、B是該拋物線上的兩點(diǎn),AB∥x軸,OA=5,AB=2.點(diǎn)E在線段OC上,作∠MEN=∠AOC,使∠MEN的一邊始終經(jīng)過點(diǎn)A,另一邊交線段BC于點(diǎn)F,連接AF.

(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)F是BC的中點(diǎn)時,求點(diǎn)E的坐標(biāo);
(3)當(dāng)△AEF是等腰三角形時,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)圖像與y軸交于點(diǎn)(0,-4),并經(jīng)過(-1,-6)和(1,2)
(1)求這個二次函數(shù)的解析式;
(2)求出這個函數(shù)的圖像的開口方向,對稱軸和頂點(diǎn)坐標(biāo);
(3)該函數(shù)圖像與x軸的交點(diǎn)坐標(biāo)                         .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線經(jīng)過兩點(diǎn),則的大小關(guān)系是       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:已知二次函數(shù)的圖象對稱軸為,且過點(diǎn)B(-1,0).求此二次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

二次函數(shù)的圖象如圖所示,則y<0時自變量x的取值范圍是     .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論中正確的是(   )
A.a(chǎn)>0B.當(dāng)x>1時,y隨x的增大而增大
C.c<0D.3是方程ax2+bx+c=0的一個根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)
(1)若點(diǎn)在此二次函數(shù)的圖象上,則     (填 “>”、“=”或“<”);
(2)如圖,此二次函數(shù)的圖象經(jīng)過點(diǎn),正方形ABCD的頂點(diǎn)C、D在x軸上, A、B恰好在二次函數(shù)的圖象上,求圖中陰影部分的面積之和.

查看答案和解析>>

同步練習(xí)冊答案