【題目】計(jì)算題:
(1)(﹣8)+3+10+(﹣2)
(2)(﹣2)×(﹣6)÷(﹣)
(3)(﹣1)100×2+(﹣2)3÷4
(4)2(a﹣3b)+3(2b﹣3a)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,AB=2,CD是邊AB的高線,動點(diǎn)E從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度沿射線AC運(yùn)動;同時(shí),動點(diǎn)F從點(diǎn)C出發(fā),以相同的速度沿射線CB運(yùn)動.設(shè)E的運(yùn)動時(shí)間為t(s)(t>0).
(1)AE= (用含t的代數(shù)式表示),∠BCD的大小是 度;
(2)點(diǎn)E在邊AC上運(yùn)動時(shí),求證:△ADE≌△CDF;
(3)點(diǎn)E在邊AC上運(yùn)動時(shí),求∠EDF的度數(shù);
(4)連結(jié)BE,當(dāng)CE=AD時(shí),直接寫出t的值和此時(shí)BE對應(yīng)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于m的方程(m-16)=7的解也是關(guān)于x的方程2(x-3)-n=52的解.
(1)求m,n的值;
(2)已知∠AOB=m°,在平面內(nèi)畫一條射線OP,恰好使得∠AOP=n∠BOP,求∠BOP.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:(1)∣—6∣+(—3.14)0—()-2+(—2)3 (2)(-a)3a2+(2a4)2÷a3.
(3) (4)(a-2b)(a+b)-3a(a+b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器超市銷售每臺進(jìn)價(jià)分別為200元,170元的A,B兩種型號的電風(fēng)扇,表中是近兩周的銷售情況:
銷售時(shí)段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 5臺 | 1800元 |
第二周 | 4臺 | 10臺 | 3100元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤=銷售收入-進(jìn)貨成本)
(1)求A,B兩種型號的電風(fēng)扇的銷售單價(jià).
(2)若超市準(zhǔn)備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30臺,則A種型號的電風(fēng)扇最多能采購多少臺?
(3)在(2)的條件下,超市銷售完這30臺電風(fēng)扇能否實(shí)現(xiàn)利潤為1400元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長為1個(gè)單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)C的坐標(biāo)為(4,﹣1).
①以O(shè)為位似中心在第二象限作位似比為1:2變換,得到對應(yīng)的△A1B1C1 , 畫出△A1B1C1 , 并寫出C1的坐標(biāo);
②以原點(diǎn)O為旋轉(zhuǎn)中心,畫出把△ABC順時(shí)針旋轉(zhuǎn)90°的圖形△A2B2C2 , 并寫出C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列情境①④分別可以用哪幅圖來近似地刻畫?正確的順序是( )
①一杯越來越?jīng)龅乃?/span>(水溫與時(shí)間的關(guān)系);②一面冉冉升起的旗子(高度與時(shí)間的關(guān)系);③足球守門員大腳開出去的球(高度與時(shí)間的關(guān)系);④勻速行駛的汽車(速度與時(shí)間的關(guān)系).
A. cdabB. acbdC. dabcD. cbad
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC外側(cè)作直線AP,點(diǎn)B關(guān)于直線AP的對稱點(diǎn)為D,連結(jié)BD,CD,其中CD交直線AP與點(diǎn)E.
(1)如圖1,若∠PAB=30°,則∠ACE= ;
(2)如圖2,若60°<∠PAB<120°,請補(bǔ)全圖形,判斷由線段AB,CE,ED可以構(gòu)成一個(gè)含有多少度角的三角形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一電線桿AB的影子分別落在了地上和墻上.同一時(shí)刻,小明豎起1米高的直桿MN,量得其影長MF為0.5米,量得電線桿AB落在地上的影子BD長3米,落在墻上的影子CD的高為2米.你能利用小明測量的數(shù)據(jù)算出電線桿AB的高嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com