【題目】定義:對于給定的兩個函數(shù),任取自變量x的一個值,當x<0時,它們對應(yīng)的函數(shù)值互為相反數(shù);當x≥0時,它們對應(yīng)的函數(shù)值相等,我們稱這樣的兩個函數(shù)互為相關(guān)函數(shù).例如:一次函數(shù)y=x﹣1,它們的相關(guān)函數(shù)為

(1)已知點A(﹣3,6)在一次函數(shù)y=ax﹣3的相關(guān)函數(shù)的圖象上,求a的值;

(2)已知二次函數(shù)y=-2x2+3.

①當點Bm,3)在這個函數(shù)的相關(guān)函數(shù)的圖象上時,求m的值;

②當﹣2≤x≤2時,求函數(shù)y=-2x2+3的相關(guān)函數(shù)的最大值和最小值.

【答案】(1)a=1;(2)0;②最大值為5,最小值為-5

【解析】

(1)寫出y=ax-3的相關(guān)函數(shù),代入計算;
(2)①寫出二次函數(shù)的相關(guān)函數(shù),代入計算;
②根據(jù)二次函數(shù)的最大值和最小值的求法解答.

(1)y=ax3的相關(guān)函數(shù)

A(3,6)代入y=ax+3得:3a+3=3,

解得a=1;

(2)二次函數(shù)的相關(guān)函數(shù)為

①當m<0,B(m,3)代入

解得: (舍去),

,B(m,3)代入得:

解得:m=0.

綜上所述:m=0

②當, ,拋物線的對稱軸為,

此時yx的增大而減小,

∴此時y的最大值為5,

,函數(shù),拋物線的對稱軸為,

x=0有最大值,最大值為3,x=2,有最小值,最小值5,

綜上所述,,函數(shù)的相關(guān)函數(shù)的最大值為5,最小值為5.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E是矩形ABCDAB上一動點(不與點B重合),過點EEFDEBC于點F,連接DF.已知AB = 4cm,AD = 2cm,設(shè)A,E兩點間的距離為xcmDEF面積為ycm2.小明根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.

下面是小明的探究過程,請補充完整:

1)確定自變量x的取值范圍是 ;

2)通過取點、畫圖、測量、分析,得到了xy的幾組值,如下表:

x/cm

0

0.5

1

1.5

2

2.5

3

3.5

y/cm2

4.0

3.7

3.9

3.8

3.3

2.0

(說明:補全表格時相關(guān)數(shù)值保留一位小數(shù))

3)建立平面直角坐標系,描出以補全后的表中各對對應(yīng)值為坐標的點,畫出該函數(shù)的圖象;

4結(jié)合畫出的函數(shù)圖象,解決問題:當DEF面積最大時,AE的長度為 cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,l1 l2 交于點 P,l2 l3 交于點 Q,∠l=104°,∠2=87°,要使得 l1∥l2,下列操作正確的是(

A. l1 繞點 P 逆時針旋轉(zhuǎn) 14°

B. l1 繞點 P 逆時針旋轉(zhuǎn) 17°

C. l2 繞點 Q 顒時針旋轉(zhuǎn) 11°

D. l2 繞點 Q 順時針旋轉(zhuǎn) 14°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:如果兩條線段將一個三角形分成 3個等腰三角形,我們把這兩條線段叫做這個三角形的“三分線”.例如:如圖①,線段、把一個頂角為的等腰分成了 3個等腰三角形,則線段就是等腰的“三分線”.

1)圖②是一個頂角為 45°的等腰三角形,在圖中畫出“三分線”,并標出每個等腰三角形頂角的度數(shù).

2)如圖③,在邊上取一點,令可以分割出第一個等腰,接著又需要考慮如何將分成2個等腰三角形,即可畫出所需要的三分線,類比該方法,在圖④中畫出的“三分線”,并標出每個等腰三角形頂角的度數(shù);

3)在中,,,

①畫出;(尺規(guī)畫圖,不寫作法,保留作圖痕跡)

②畫出的“三分線”,并做適當?shù)臉俗ⅲ?/span>

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個多邊形的每一個內(nèi)角都相等,并且每個外角都等于和它相鄰的內(nèi)角的一半.

(1)求這個多邊形是幾邊形;

(2)求這個多邊形的每一個內(nèi)角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長都是1,ABC的頂點都在正方形網(wǎng)格的格點(網(wǎng)格線的交點)上.

(1)請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標系,使點A坐標為(1,3)點B坐標為(2,1);

(2)請作出△ABC關(guān)于y軸對稱的△A'B'C',并寫出點C'的坐標;

(3)判斷△ABC的形狀.并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正比例函數(shù)y=2x的圖象與反比例函數(shù)y=(k≠0)在第一象限的圖象交于A點,過A點作x軸的垂線,垂足為P點,已知OAP的面積為1.

(1)求反比例函數(shù)的解析式;

(2)如果點B為反比例函數(shù)在第一象限圖象上的點(點B與點A不重合),且點B的橫坐標為2,在x軸上求一點M,使MA+MB最。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,O為坐標原點,四邊形OABC為矩形,B(5,2),點DOA的中點,動點P在線段BC上以每秒2個單位長的速度由點CB 運動.設(shè)動點P的運動時間為t

(1)當t為何值時,四邊形PODB是平行四邊形?

(2)在直線CB上是否存在一點Q,使得ODQP四點為頂點的四邊形是菱形?若存在,求t的值,并求出Q點的坐標;若不存在,請說明理由.

(3)在線段PB上有一點M,且PM=2.5,當P運動多少,四邊形OAMP的周長最小值為多少,并畫圖標出點M的位置.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點,動點從原點出發(fā),沿軸正半軸運動,速度為每秒1個單位長度,以點為直角頂點在第一象限內(nèi)作等腰直角三角形.設(shè)點的運動時間為秒.

1)若軸,求的值;

2)若,求點的坐標.

3)當時,軸上是否存在有一點,使得以、為頂點的三角形是等腰三角形,請直接寫出點的坐標.

查看答案和解析>>

同步練習冊答案