【題目】如圖,已知直線軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過、兩點(diǎn)并與軸的另一個(gè)交點(diǎn)為,且.

1)求拋物線的解析式;

2)點(diǎn)為直線上方對(duì)稱軸右側(cè)拋物線上一點(diǎn),當(dāng)的面積為時(shí),求點(diǎn)的坐標(biāo);

3)在(2)的條件下,連接,作軸于,連接,點(diǎn)為線段上一點(diǎn),點(diǎn)為線段上一點(diǎn),滿足,過點(diǎn)軸于點(diǎn),連接,當(dāng)時(shí),求的長(zhǎng).

【答案】1;(2R3,3);(31

【解析】

1)求出A、B、C的坐標(biāo),把A、B的坐標(biāo)代入拋物線解析式,解方程組即可得出結(jié)論;

2)設(shè)Rt,).作RKy軸于K,RWx軸于W,連接OR

根據(jù)計(jì)算即可;

3)在RH上截取RM=OA,連接CMAM,AMPEG,作QFOBH.分兩種情況討論:①點(diǎn)EF的左邊;②點(diǎn)EF的右邊.

1)當(dāng)x=0時(shí)y=3,

C0,3),

OC=3

OC=3OA

OA=1,

A-1,0).

當(dāng)y=0時(shí)x=4,

B4,0).

AB坐標(biāo)代入得解得:,

∴拋物線的解析式為

2)設(shè)Rt,).

RKy軸于K,RWx軸于W,連接OR

,

,(舍去),,

R3,3).

3)在RH上截取RM=OA,連接CM、AM,AMPEG,作QFOBH

分兩種情況討論:①當(dāng)點(diǎn)EF的左邊時(shí),如圖1

CR=CO,∠CRM=COA

∴△CRM≌△COA,

CM=CA,∠RCM=OCA,

∴∠ACM=OCR=90°,

∴∠CAM=CMA=45°.

ACPE,

∴∠CAM=AGE=45°.

∵∠PEQ=45°,

∴∠AGE=PEQ

AMEQ,

∴∠MAH=QEF

∵∠QFE=MHA=90°,

∴△QEF∽△MAH

OA=1,OH=3MH=RH-RM=3-1=2,

AH=AO+OH=4,

EF=2QF

設(shè)CP=m,

QH=CP=m

OC=OH,

∴∠OHC=45°,

QF=FH=m,

EF=2m,

EH=3m

ACPE為平行四邊形,

AE=CP=m

EH=AH-AE=4-m,

3m=4-m,

m=1

CP=1

②當(dāng)點(diǎn)EF的右邊時(shí),設(shè)AMQEN.如圖2

CR=CO,∠CRM=COA,

∴△CRM≌△COA,

CM=CA,∠RCM=OCA,

∴∠ACM=OCR=90°,

∴∠CAM=CMA=45°.

ACPE

∴∠CAM=AGE=45°.

∵∠PEQ=45°,

∴∠AGE=PEQ=45°,

∴∠ENG=ENA=90°.

∵∠EQF+QEF=90°,∠EAN+QEF=90°,

∴∠EQF=MAB

∵∠QFE=AHM=90°,

∴△QEF∽△AMH

,

QF=2EF

設(shè)CP=m,

QH=CP=m

OC=OH

∴∠OHC=45°,

QF=FH=m

EF=m,

EH=m

ACPE為平行四邊形,

AE=CP=m

EH=AH-AE=4-m,

4-m=m,

m=

CP=

綜上所述:CP的值為1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)實(shí)施產(chǎn)業(yè)扶貧,幫助貧困戶承包了荒山種植某品種蜜柚.到了收獲季節(jié),已知該蜜柚的成本價(jià)為8/千克,投入市場(chǎng)銷售時(shí),調(diào)查市場(chǎng)行情,發(fā)現(xiàn)該蜜柚銷售不會(huì)虧本,且每天銷售量(千克)與銷售單價(jià)(/千克)之間的函數(shù)關(guān)系如圖所示.

(1)的函數(shù)關(guān)系式,并寫出的取值范圍;

(2)當(dāng)該品種蜜柚定價(jià)為多少時(shí),每天銷售獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

(3)某農(nóng)戶今年共采摘蜜柚4800千克,該品種蜜柚的保質(zhì)期為40天,根據(jù)(2)中獲得最大利潤(rùn)的方式進(jìn)行銷售,能否銷售完這批蜜柚?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“早黑寶”葡萄品種是我省農(nóng)科院研制的優(yōu)質(zhì)新品種,在我省被廣泛種植,鄧州市某葡萄種植基地2017年種植“早黑寶”100畝,到2019年“卓黑寶”的種植面積達(dá)到196.

1)求該基地這兩年“早黑寶”種植面積的平均增長(zhǎng)率;

2)市場(chǎng)調(diào)查發(fā)現(xiàn),當(dāng)“早黑寶”的售價(jià)為20/千克時(shí),每天能售出200千克,售價(jià)每降價(jià)1元,每天可多售出50千克,為了推廣宣傳,基地決定降價(jià)促銷,同時(shí)減少庫存,已知該基地“早黑寶”的平均成本價(jià)為12/千克,若使銷售“早黑寶”每天獲利1750元,則售價(jià)應(yīng)降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線lyx,點(diǎn)A1坐標(biāo)為(1,0),過點(diǎn)A1x軸的垂線交直線l于點(diǎn)B1,以原點(diǎn)O為圓心,OB1為半徑畫弧交x軸于點(diǎn)A2;再過點(diǎn)A2x的垂線交直線l于點(diǎn)B2,以原點(diǎn)O為圓心,OB2長(zhǎng)為半徑畫弧交x軸于點(diǎn)A3,…,按此做法進(jìn)行下去.

求:(1)點(diǎn)B1的坐標(biāo)和∠A1OB1的度數(shù);

2)弦A4B3的弦心距的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知中,,,且,,,,則的長(zhǎng)度為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】陽光體育活動(dòng)時(shí)間,甲、乙、丙、丁四位同學(xué)進(jìn)行一次乒乓球單打比賽,要從中選出兩位同學(xué)打第一場(chǎng)比賽.

1)若已確定甲打第一場(chǎng),再從其余三位同學(xué)中隨機(jī)選取一位,恰好選中丙同學(xué)的概率為 ;

2)用畫樹狀圖或列表的方法,求恰好選中甲、乙兩位同學(xué)進(jìn)行比賽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一段拋物線:記為,它與軸交于兩點(diǎn),;將旋轉(zhuǎn)得到,交軸于;將旋轉(zhuǎn)得到,交軸于;如此進(jìn)行下去,直至得到,若點(diǎn)在第6段拋物線上,則______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一袋中裝有形狀大小都相同的四個(gè)小球,每個(gè)小球上各標(biāo)有一個(gè)數(shù)字,分別是1,4,7,8.現(xiàn)規(guī)定從袋中任取一個(gè)小球,對(duì)應(yīng)的數(shù)字作為一個(gè)兩位數(shù)的個(gè)位數(shù);然后將小球放回袋中并攪拌均勻,再任取一個(gè)小球,對(duì)應(yīng)的數(shù)字作為這個(gè)兩位數(shù)的十位數(shù).

(1)寫出按上述規(guī)定得到所有可能的兩位數(shù);

(2)從這些兩位數(shù)中任取一個(gè),求其算術(shù)平方根大于4且小于7的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】山西物產(chǎn)豐富,在歷史傳承與現(xiàn)代科技進(jìn)步中,特色農(nóng)林牧業(yè)、農(nóng)產(chǎn)品加工業(yè)、傳統(tǒng)手工業(yè)不斷發(fā)展革新,富有地域特色和品牌的士特產(chǎn)品愈加豐富.根據(jù)市場(chǎng)調(diào)查,下面五種特產(chǎn)比較受人們的青睞:山西汾酒、山西老陳醋、晉中平遙牛肉、山西沁州黃小米、運(yùn)城芮城麻片,某學(xué)校老師帶領(lǐng)學(xué)生在集市上隨機(jī)調(diào)查了部分市民對(duì)我最喜愛的特產(chǎn)進(jìn)行投票,將票數(shù)進(jìn)行統(tǒng)計(jì).繪制了如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(均不完整).

請(qǐng)根據(jù)圖中的信息解答下列問題.

直接寫出參與投票的人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

若該集市上共有人,請(qǐng)估計(jì)該集市喜愛運(yùn)城芮城麻片的人數(shù);

若要從這五種特產(chǎn)中隨機(jī)抽取出兩種特產(chǎn),請(qǐng)用畫樹狀圖或列表的方法,求正好抽到山西汾酒和晉中平遙牛肉的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案