【題目】閱讀下列一段文字,然后回答下列問題:

已知平面內(nèi)兩點P1(x1y1),P2(x2,y2),其兩點間的距離。例如:已知P(3,1),Q(1,-2),則這兩點間的距離.特別地,如果兩點M(x1y1),N(x2,y2),所在的直線與坐標(biāo)軸重合或平行于坐標(biāo)軸或者垂直于坐標(biāo)軸,那么這兩點間的距離公式可簡化為。

(1)已知A(23),B(-1-2),則AB兩點間的距離為_________;

(2)已知M,N在平行于y軸的直線上,點M的縱坐標(biāo)為-2,點N的縱坐標(biāo)為3,則MN兩點間的距離為_________;

(3)在平面直角坐標(biāo)系中,已知A(0,4)B(4,2),在x軸上找點P,使PA+PB的長度最短,求出點P的坐標(biāo)及PA+PB的最短長度.

【答案】(1);(2)5(3) PA+PB的長度最短時,點P的坐標(biāo)為(,0),PA+PB的最短長度為.

【解析】

1)直接利用兩點之間距離公式直接求出即可;
2)根據(jù)題意列式計算即可;
3)利用軸對稱求最短路線方法得出P點位置,進而求出PA+PB的最小值.

(1) 1)∵A2,3),B-1,-2),
A,B兩點間的距離為: ;

(2) M,N在平行于y軸的直線上,點M的縱坐標(biāo)為-2,點N的縱坐標(biāo)為3
M,N兩點間的距離為3--2=5

(3)如圖,作點A關(guān)于x軸的對稱點A′,連接A′Bx軸交于點P,此時PA+PB最短

設(shè)A′B的解析式為y=kx+b

A′(0-4),B(4,2)代入y=kx+b

解得

∴直線設(shè)A′B的解析式為

y=0

P(0,).

PA′=PA

PA+PB=PA′+PB=A′B=

PA+PB的長度最短時,點P的坐標(biāo)為(,0)PA+PB的最短長度為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【題目】如圖,某數(shù)學(xué)興趣小組想測量一棵樹CD的高度,他們先在點A處測得樹頂C的仰角為30°,然后沿AD方向前行10m,到達B點,在B處測得樹頂C的仰角高度為60°(A、B、D三點在同一直線上).請你根據(jù)他們測量數(shù)據(jù)計算這棵樹CD的高度(結(jié)果精確到0.1m).(參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在讀書月活動中,學(xué)校準(zhǔn)備購買一批課外讀物.為使課外讀物滿足同學(xué)們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個類別進行了抽樣調(diào)查(每位同學(xué)只選一類),如圖是根

據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次調(diào)查中,一共調(diào)查了   名同學(xué);

(2)條形統(tǒng)計圖中,m=   ,n=   

(3)扇形統(tǒng)計圖中,藝術(shù)類讀物所在扇形的圓心角是   度;

(4)學(xué)校計劃購買課外讀物6000冊,請根據(jù)樣本數(shù)據(jù),估計學(xué)校購買其他類讀物多少冊比較合理?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,矩形ABCD的兩條邊在坐標(biāo)軸上,點D與坐標(biāo)原點O重合,且AD=8,AB=6.如圖2,矩形ABCD沿OB方向以每秒1個單位長度的速度運動,同時點PA點出發(fā)也以每秒1個單位長度的速度沿矩形ABCD的邊AB經(jīng)過點B向點C運動,當(dāng)點P到達點C時,矩形ABCD和點P同時停止運動,設(shè)點P的運動時間為t秒.

1)當(dāng)t=5時,請直接寫出點D、點P的坐標(biāo);

2)當(dāng)點P在線段AB或線段BC上運動時,求出△PBD的面積S關(guān)于t的函數(shù)關(guān)系式,并寫出相應(yīng)t的取值范圍;

3)點P在線段AB或線段BC上運動時,作PE⊥x軸,垂足為點E,當(dāng)△PEO△BCD相似時,求出相應(yīng)的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)戶種植一種經(jīng)濟作物,總用水量y(米3)與種植時間x(天)之間的函數(shù)關(guān)系式如圖所示.

(1)第20天的總用水量為多少米3?

(2)當(dāng)x≥20時,求yx之間的函數(shù)關(guān)系式;

(3)種植時間為多少天時,總用水量達到70003?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖,在平面直角坐標(biāo)系中,直線y=x-3與坐標(biāo)軸交于A,B兩點.

(1)A,B兩點的坐標(biāo);

(2)AB為邊在第四象限內(nèi)作等邊三角形ABC,求ABC的面積;

(3)在平面內(nèi)是否存在點M,使得以M,O,AB為頂點的四邊形是平行四邊形,若存在,直接寫出M點的坐標(biāo):若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】感知與填空:如圖①,直線,求證:.

閱讀下面的解答過程,并填上適當(dāng)?shù)睦碛桑?/span>

:過點作直線,

(已知),

,

應(yīng)用與拓展:如圖②,直線,若.

方法與實踐:如圖③,直線,若, .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,把手AM的仰角α=37°,此時把手端點A、出水口B和點落水點C在同一直線上,洗手盆及水龍頭的相關(guān)數(shù)據(jù)如圖2.(參考數(shù)據(jù):sin37°=,cos37°=,tan37°=

求把手端點A到BD的距離;

求CH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,已知∠AOC=75°,∠BOE :∠DOE=2:3

1)求∠BOE的度數(shù);

2)若OF平分∠AOE,∠AOC與∠AOF相等嗎?為什么?

查看答案和解析>>

同步練習(xí)冊答案