【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點(diǎn),AE=ED,DC=4DF,連接EF并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)G

1)求證:△ABE∽△DEF;

2)若正方形的邊長(zhǎng)為16,求BG的長(zhǎng).

【答案】1)證明見(jiàn)解析;(240

【解析】

1)根據(jù)兩組對(duì)應(yīng)邊的比相等且?jiàn)A角對(duì)應(yīng)相等的兩個(gè)三角形相似進(jìn)行求證;

2)通過(guò)證明△DEF∽△CGF得出=,求出CG的長(zhǎng)即可.

1)證明:∵ABCD為正方形,

AD=AB=DC=BC,∠A=D=90°,

AE=ED,

=,

DC=4DF,

=,

=,

∴△ABE∽△DEF;

2)∵ABCD為正方形,

EDBG,

DEF∽△CGF,

=,

又∵DC=4DF,正方形的邊長(zhǎng)為16,

ED=8,CG=24,

BG=BC+CG=40.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,王老師將某班近三個(gè)月跳躍類項(xiàng)目的訓(xùn)練情況做了統(tǒng)計(jì),并繪制了折線統(tǒng)計(jì)圖,則根據(jù)圖中信息以下判斷錯(cuò)誤的是(

A.男女生5月份的平均成績(jī)一樣

B.4月到6月,女生平均成績(jī)一直在進(jìn)步

C.4月到5月,女生平均成績(jī)的增長(zhǎng)率約為

D.5月到6月女生平均成績(jī)比4月到5月的平均成績(jī)?cè)鲩L(zhǎng)快

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了發(fā)展鄉(xiāng)村旅游,建設(shè)美麗鄉(xiāng)村,某中學(xué)七年級(jí)(1)班同學(xué)都積極參加了植樹(shù)活動(dòng),將今年三月份該班同學(xué)的植樹(shù)情況繪制成如圖所示的不完整的統(tǒng)計(jì)圖.已知植樹(shù)量為2株的人數(shù)占總?cè)藬?shù)的32%

1)該班的總?cè)藬?shù)為____________,植樹(shù)株數(shù)的眾數(shù)是____________,植樹(shù)株數(shù)的中位數(shù)是____________;

2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)若將該班同學(xué)的植樹(shù)情況繪制成扇形統(tǒng)計(jì)圖,求“植樹(shù)量為3株”所對(duì)應(yīng)的扇形的園心角度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一般情況下,學(xué)生注意力上課后逐漸增強(qiáng),中間有段時(shí)間處于較理想的穩(wěn)定狀態(tài),隨后開(kāi)始分散.實(shí)驗(yàn)結(jié)果表明,學(xué)生注意力指數(shù)y隨時(shí)間x(min)的變化規(guī)律如圖所示(其中分別為線段,為雙曲線的一部分)

1)上課后第與第相比較,何時(shí)學(xué)生注意力更集中?

2)某道難題需連續(xù)講,為保證效果,學(xué)生注意力指數(shù)不宜低于,老師能否在所需要求下講完這道題?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)D在反比例函數(shù)的圖象上,過(guò)點(diǎn)Dx軸的平行線交y軸于點(diǎn)B0,2),過(guò)點(diǎn)A(,0)的直線ykx+by軸于點(diǎn)C,且BD2OC,tanOAC

1)求反比例函數(shù)的解析式;

2)連接CD,試判斷線段AC與線段CD的關(guān)系,并說(shuō)明理由;

3)點(diǎn)Ex軸上點(diǎn)A左側(cè)的一點(diǎn),且AEBD,連接BE交直線CA于點(diǎn)M,求tanBMC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),已知點(diǎn)G在正方形ABCD的對(duì)角線AC上,GEBC,垂足為點(diǎn)E,GFCD,垂足為點(diǎn)F.

(1)證明與推斷:

①求證:四邊形CEGF是正方形;

②推斷:的值為   

(2)探究與證明:

將正方形CEGF繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AGBE之間的數(shù)量關(guān)系,并說(shuō)明理由:

(3)拓展與運(yùn)用:

正方形CEGF在旋轉(zhuǎn)過(guò)程中,當(dāng)B,E,F(xiàn)三點(diǎn)在一條直線上時(shí),如圖(3)所示,延長(zhǎng)CGAD于點(diǎn)H.若AG=6,GH=2,則BC=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:對(duì)于任意正實(shí)數(shù)a、b,∵≥0, ∴≥0,

,只有當(dāng)ab時(shí),等號(hào)成立.

結(jié)論:在a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥,只有當(dāng)ab時(shí),a+b有最小值

根據(jù)上述內(nèi)容,回答下列問(wèn)題:

m0,只有當(dāng)m 時(shí),有最小值

思考驗(yàn)證:如圖1,AB為半圓O的直徑,C為半圓上任意一點(diǎn)(與點(diǎn)A、B不重合),過(guò)點(diǎn)CCDAB,垂足為D,ADa,DBb

試根據(jù)圖形驗(yàn)證,并指出等號(hào)成立時(shí)的條件.

探索應(yīng)用:如圖2,已知A(3,0),B(0,-4),P為雙曲線x0)上的任意一點(diǎn),過(guò)點(diǎn)PPCx軸于點(diǎn)C,PDy軸于點(diǎn)D.求四邊形ABCD面積的最小值,并說(shuō)明此時(shí)四邊形ABCD的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,點(diǎn)、同時(shí)從點(diǎn)出發(fā),以的速度分別沿、勻速運(yùn)動(dòng),當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為.過(guò)點(diǎn)的垂線于點(diǎn),點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱.

1)當(dāng)_____時(shí),點(diǎn)的平分線上;

2)當(dāng)_____時(shí),點(diǎn)邊上;

3)設(shè)重合部分的面積為,求之間的函數(shù)關(guān)系式,并寫(xiě)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案