【題目】閱讀下面材料:
小明遇到這樣一個問題:如圖1,△ABC中,AB=AC,點(diǎn)D在BC邊上,∠DAB=∠ABD,BE⊥AD,垂足為E,求證:BC=2AE.
小明經(jīng)探究發(fā)現(xiàn),過點(diǎn)A作AF⊥BC,垂足為F,得到∠AFB=∠BEA,從而可證△ABF≌△BAE(如圖2),使問題得到解決.
(1)根據(jù)閱讀材料回答:△ABF與△BAE全等的條件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一個)
參考小明思考問題的方法,解答下列問題:
(2)如圖3,△ABC中,AB=AC,∠BAC=90°,D為BC的中點(diǎn),E為DC的中點(diǎn),點(diǎn)F在AC的延長線上,且∠CDF=∠EAC,若CF=2,求AB的長;
(3)如圖4,△ABC中,AB=AC,∠BAC=120°,點(diǎn)D、E分別在AB、AC邊上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).
【答案】(1)AAS;(2)4;(3)=.
【解析】
試題分析:(1)作AF⊥BC,判斷出△ABF≌△BAE(AAS),得出BF=AE,即可;
(2)先求出tan∠DAE=,再由tan∠F=tan∠DAE,求出CG,最后用△DCG∽△ACE求出AC;
(3)構(gòu)造含30°角的直角三角形,設(shè)出DG,在Rt△ABH,Rt△ADN,Rt△ABH中分別用a,k表示出AB=2a(k+1),BH=a(k+1),BC=2BH=a(k+1),CG=a(2k+1),DN=ka,最后用△NDE∽△GDC,求出AE,EC即可.
試題解析:(1)如圖2,作AF⊥BC,∵BE⊥AD,∴∠AFB=∠BEA,在△ABF和△BAE中,∵∠AFB=∠BEA,∠DAB=∠ABD,AB=AB,∴△ABF≌△BAE(AAS),∴BF=AE.∵AB=AC,AF⊥BC,∴BF=BC,∴BC=2AE,故答案為:AAS.
(2)如圖3,連接AD,作CG⊥AF,在Rt△ABC中,AB=AC,點(diǎn)D是BC中點(diǎn),∴AD=CD,∵點(diǎn)E是DC中點(diǎn),∴DE=CD=AD,∴tan∠DAE==,∵AB=AC,∠BAC=90°,點(diǎn)D為BC中點(diǎn),∴∠ADC=90°,∠ACB=∠DAC=45°,∴∠F+∠CDF=∠ACB=45°,∵∠CDF=∠EAC,∴∠F+∠EAC=45°,∵∠DAE+∠EAC=45°,∴∠F=∠DAE,∴tan∠F=tan∠DAE=,∴,∴CG=×2=1,∵∠ACG=90°,∠ACB=45°,∴∠DCG=45°,∵∠CDF=∠EAC,∴△DCG∽△ACE,∴,∵CD=AC,CE=CD=AC,∴,∴AC=4;∴AB=4;
(3)如圖4,過點(diǎn)D作DG⊥BC,設(shè)DG=a,在Rt△BGD中,∠B=30°,∴BD=2a,BG=a,∵AD=kDB,∴AD=2ka,AB=BD+AD=2a+2ka=2a(k+1),過點(diǎn)A作AH⊥BC,在Rt△ABH中,∠B=30°,∴BH=a(k+1),∵AB=AC,AH⊥BC,∴BC=2BH=a(k+1),∴CG=BC﹣BG=a(2k+1),過D作DN⊥AC交CA延長線與N,∵∠BAC=120°,∴∠DAN=60°,∴∠ADN=30°,∴AN=ka,DN=ka,∵∠DGC=∠AND=90°,∠AED=∠BCD,∴△NDE∽△GDC,∴,∴,∴NE=3ak(2k+1),∴EC=AC﹣AE=AB﹣AE=2a(k+1)﹣2ak(3k+1)=,∴==.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是蹺蹺板的示意圖.支柱OC與地面垂直,點(diǎn)O是橫板AB的中點(diǎn),AB可以繞著點(diǎn)O上下轉(zhuǎn)動,當(dāng)A端落地時,∠OAC=20°,蹺蹺板上下可轉(zhuǎn)動的最大角度(即∠A′OA)是( )
A.80°
B.60°
C.40°
D.20°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一張長方形紙片ABCD沿EF折疊后ED與BC的交點(diǎn)為G,D,C分別在M,N的位置上,若∠EFG=56°,則∠1= , ∠2= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=mx﹣3m2+12,請按要求解答問題:
(1)m為何值時,函數(shù)圖象過原點(diǎn),且y隨x的增大而減?
(2)若函數(shù)圖象平行于直線y=﹣x,求一次函數(shù)解析式;
(3)若點(diǎn)(0,﹣15)在函數(shù)圖象上,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
我們把滿足某種條件的所有點(diǎn)所組成的圖形,叫做符合這個條件的點(diǎn)的軌跡.
例如:角的平分線是到角的兩邊距離相等的點(diǎn)的軌跡.
問題:如圖1,已知EF為△ABC的中位線,M是邊BC上一動點(diǎn),連接AM交EF于點(diǎn)P,那么動點(diǎn)P為線段AM中點(diǎn).
理由:∵線段EF為△ABC的中位線,∴EF∥BC,由平行線分線段成比例得:動點(diǎn)P為線段AM中點(diǎn).
由此你得到動點(diǎn)P的運(yùn)動軌跡是: .
知識應(yīng)用:
如圖2,已知EF為等邊△ABC邊AB、AC上的動點(diǎn),連結(jié)EF;若AF=BE,且等邊△ABC的邊長為8,求線段EF中點(diǎn)Q的運(yùn)動軌跡的長.
拓展提高:
如圖3,P為線段AB上一動點(diǎn)(點(diǎn)P不與點(diǎn)A、B重合),在線段AB的同側(cè)分別作等邊△APC和等邊△PBD,連結(jié)AD、BC,交點(diǎn)為Q.
(1)求∠AQB的度數(shù);
(2)若AB=6,求動點(diǎn)Q運(yùn)動軌跡的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,點(diǎn)D為AC邊上的動點(diǎn),點(diǎn)D從點(diǎn)C出發(fā),沿邊CA向A運(yùn)動,當(dāng)運(yùn)動到點(diǎn)A時停止,若設(shè)點(diǎn)D運(yùn)動的速度為每秒1個單位長度,當(dāng)運(yùn)動時間t為多少秒時,以點(diǎn)C、B、D為頂點(diǎn)的三角形是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)O是直線AB上一點(diǎn),∠COD是直角,OE平分∠BOC.
(1)①、如圖1,若∠AOC=50°,求∠DOE的度數(shù);
②、如圖1,若∠AOC=α,直接寫出∠DOE的度數(shù)(用含α的代數(shù)式表示);
(2)將圖1中的∠COD按順時針方向旋轉(zhuǎn)至圖2所示的位置.
探究∠AOC與∠DOE的度數(shù)之間的關(guān)系,寫出你的結(jié)論,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com