【題目】已知是上一點(diǎn),.
(Ⅰ)如圖①,過(guò)點(diǎn)作的切線,與的延長(zhǎng)線交于點(diǎn),求的大小及的長(zhǎng);
(Ⅱ)如圖②,為上一點(diǎn),延長(zhǎng)線與交于點(diǎn),若,求的大小及的長(zhǎng).
【答案】(Ⅰ),PA=4;(Ⅱ),
【解析】
(Ⅰ)易得△OAC是等邊三角形即∠AOC=60°,又由PC是○O的切線故PC⊥OC,即∠OCP=90°可得∠P的度數(shù),由OC=4可得PA的長(zhǎng)度
(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,易得∠APC=45°;過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D,易得AD=AO=CO,在Rt△DOC中易得CD的長(zhǎng),即可求解
解:(Ⅰ)∵AB是○O的直徑,∴OA是○O的半徑.
∵∠OAC=60°,OA=OC,∴△OAC是等邊三角形.
∴∠AOC=60°.
∵PC是○O的切線,OC為○O的半徑,
∴PC⊥OC,即∠OCP=90°∴∠P=30°.
∴PO=2CO=8.
∴PA=PO-AO=PO-CO=4.
(Ⅱ)由(Ⅰ)知△OAC是等邊三角形,
∴∠AOC=∠ACO=∠OAC=60°∴∠AQC=30°.
∵AQ=CQ,∴∠ACQ=∠QAC=75°
∴∠ACQ-∠ACO=∠QAC-∠OAC=15°即∠QCO=∠QAO=15°.
∴∠APC=∠AQC+∠QAO=45°.
如圖②,過(guò)點(diǎn)C作CD⊥AB于點(diǎn)D.
∵△OAC是等邊三角形,CD⊥AB于點(diǎn)D,
∴∠DCO=30°,AD=AO=CO=2.
∵∠APC=45°,∴∠DCQ=∠APC=45°
∴PD=CD
在Rt△DOC中,OC=4,∠DCO=30°,∴OD=2,∴CD=2
∴PD=CD=2
∴AP=AD+DP=2+2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,要在木里縣某林場(chǎng)東西方向的兩地之間修一條公路MN,已知點(diǎn)C周圍200 m范圍內(nèi)為原始森林保護(hù)區(qū),在MN上的點(diǎn)A處測(cè)得C在A的北偏東45°方向上,從A向東走600 m到達(dá)B處,測(cè)得C在點(diǎn)B的北偏西60°方向上.
(1)MN是否穿過(guò)原始森林保護(hù)區(qū)?為什么?(參考數(shù)據(jù): ≈1.732)
(2)若修路工程順利進(jìn)行,要使修路工程比原計(jì)劃提前5天完成,需將原定的工作效率提高25%,則原計(jì)劃完成這項(xiàng)工程需要多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn)A(-1,0),點(diǎn)B(-3,0),且OB=OC,
(1)求拋物線的解析式;
(2)點(diǎn)P在拋物線上,且∠POB=∠ACB,求點(diǎn)P的坐標(biāo);
(3)拋物線上兩點(diǎn)M,N,點(diǎn)M的橫坐標(biāo)為m,點(diǎn)N的橫坐標(biāo)為m+4.點(diǎn)D是拋物線上M,N之間的動(dòng)點(diǎn),過(guò)點(diǎn)D作y軸的平行線交MN于點(diǎn)E.
①求DE的最大值.
②點(diǎn)D關(guān)于點(diǎn)E的對(duì)稱點(diǎn)為F.當(dāng)m為何值時(shí),四邊形MDNF為矩形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某初級(jí)中學(xué)數(shù)學(xué)興趣小組為了了解本校學(xué)生的年齡情況,隨機(jī)調(diào)查了該校部分學(xué)生的年齡,整理數(shù)據(jù)并繪制如下不完整的統(tǒng)計(jì)圖.
依據(jù)以上信息解答以下問(wèn)題:
(1)求樣本容量;
(2)直接寫出樣本容量的平均數(shù),眾數(shù)和中位數(shù);
(3)若該校一共有1800名學(xué)生,估計(jì)該校年齡在15歲及以上的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(6分)如圖①所示,將直尺擺放在三角板ABC上,使直尺與三角板的邊分別交于點(diǎn)D,E,F,G,量得∠CGD=42°。
(1)求∠CEF的度數(shù);
(2)將直尺向下平移,使直尺的邊緣通過(guò)三角板的頂點(diǎn)B,交AC邊于點(diǎn)H,如圖②所示.點(diǎn)H,B在直尺上的讀數(shù)分別為4,13.4,求BC的長(zhǎng)(結(jié)果保留兩位小數(shù)).
(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)“一帶一路”戰(zhàn)略給沿線國(guó)家和地區(qū)帶來(lái)很大的經(jīng)濟(jì)效益,沿線某地區(qū)居民2016年人均收入人民幣2600元,預(yù)計(jì)2018年人均收入將達(dá)到人民幣13000元,設(shè)2016年到2018年該地區(qū)居民人均收入平均增長(zhǎng)率為x,可列方程為( 。.
A.2600(1+2x)=13000B.2600(1+x)2=13000
C.2600(1+x2)=13000D.2600+2x=13000
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解七、八年級(jí)學(xué)生英語(yǔ)聽力訓(xùn)練情況(七、八年級(jí)學(xué)生人數(shù)相同),某周從這兩個(gè)年級(jí)學(xué)生中分別隨機(jī)抽查了30名同學(xué),調(diào)查了他們周一至周五的聽力訓(xùn)練情況,根據(jù)調(diào)查情況得到如下統(tǒng)計(jì)圖表:周一至周五英語(yǔ)聽力訓(xùn)練人數(shù)統(tǒng)計(jì)表
年級(jí) | 參加英語(yǔ)聽力訓(xùn)練人數(shù) | ||||
周一 | 周二 | 周三 | 周四 | 周五 | |
七年級(jí) | 15 | 20 | 30 | 30 | |
八年級(jí) | 20 | 24 | 26 | 30 | 30 |
合計(jì) | 35 | 44 | 51 | 60 | 60 |
(1)填空:________;
(2)根據(jù)上述統(tǒng)計(jì)圖表完成下表中的相關(guān)統(tǒng)計(jì)量:
年級(jí) | 平均訓(xùn)練時(shí)間的中位數(shù) | 參加英語(yǔ)聽力訓(xùn)練人數(shù)的方差 |
七年級(jí) | 24 | 34 |
八年級(jí) | 14.4 |
(3)請(qǐng)你利用上述統(tǒng)計(jì)圖表,對(duì)七、八年級(jí)英語(yǔ)聽力訓(xùn)練情況寫出兩條合理的評(píng)價(jià);
(4)請(qǐng)你結(jié)合周一至周五英語(yǔ)聽力訓(xùn)練人數(shù)統(tǒng)計(jì)表,估計(jì)該校七、八年級(jí)共480名學(xué)生中周一至周五平均每天有多少人進(jìn)行英語(yǔ)聽力訓(xùn)練.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解不等式組請(qǐng)結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得____________________;
(Ⅱ)解不等式②,得_______________________;
(III)把不等式①和②的解集在數(shù)軸上表示出來(lái):
(IV)原不等式組的解集為________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若直線l : y kx b k 0 與曲線有 n 個(gè)交點(diǎn),則稱直線l 為曲線的“ n 階共生直線”,交點(diǎn)稱為它們的“共生點(diǎn)”.
(1)若直線 y kx b k 0與某曲線的一個(gè)“共生點(diǎn)”為 P m, 2m 1,試判斷此“共生點(diǎn)”不可能位于第幾象限,請(qǐng)說(shuō)明理由.
(2)若直線 l : y kx 2k k 0 與 x 、 y 軸分別交于 A 、 B 兩點(diǎn),且直線 l 為反比例函數(shù)y=的“ 2階共生直線”,且“共生點(diǎn)”為C、D,求k的取值范圍,試證明此時(shí)不論 k 取何值,總有 AC BD 成立.
(3)若直線l : y kx 2k k 0 與 x 軸交于點(diǎn) A ,且直線l 為拋物線 y x2 2x 1的“2 階共生直線”,且“共生點(diǎn)”為 P 、Q xP xQ ,若 AQ 3AP ,求 k 的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com