【題目】如圖,RtABC中,∠ACB90°,CDAB,∠CAB的平分線AECD于點H、交CB于點E,EFAB于點F,則下列結(jié)論中不正確的是( 。

A. ACD=∠BB. CHCEEFC. CHHDD. ACAF

【答案】C

【解析】

根據(jù)角平分線的性質(zhì)可得CE=EF,由于AE是公共邊,利用三角形全等的判定定理,從而可得AEF≌△AEC;利用全等三角形的性質(zhì)即可解得.

對于選項A,

CDAB,

∴∠CAD+ACD=90°.

∵△ABC是直角三角形,

∴∠CAD+ABC=90°.

∵∠CAD+ABC=90°,CAD+ACD=90°,

∴∠ACD=ABC.

所以選項A不符合題意;

對于選項B,

AE是∠BAC的角平分線,∠ACE=90°,EFAB,

CE=EF.

∵∠ACE=90°,EFAB,CE=EF,AE=AE,

∴△AEF≌△AEC,

∴∠CEA=FEA.

CDAB,EFAB,

CDEF,

∴∠FEA=CHE.

∵∠FEA=CHE,CEA=FEA,

∴∠CHE=CEA,

CH=CE.

CH=CE,CE=EF,

CH=CE=EF.

所以選項B不符合題意;

對于選項D,

∵△AEF≌△AEC,

AC=AF.

所以選項D不符合題意.

根據(jù)題中條件無法得到CH=HD,

所以選項C符合題意.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角ABC中,延長BC到點D,點OAC邊上的一個動點,過點O作直線MNBC,MN分別交∠ACB、∠ACD的平分線于EF兩點,連接AE、AF,在下列結(jié)論中:①OEOF;②CECF;③若CE12,CF5,則OC的長為6;④當(dāng)AOCO時,四邊形AECF是矩形.其中正確的是( 。

A. ①④B. ①②C. ①②③D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為美化校園,計劃對面積為400平方米的花壇區(qū)域進行綠化,安排甲工程隊或乙工程隊完成.已知甲隊平均每天完成綠化的面積是乙隊的2倍,并且甲隊比乙隊能少用4天完成任務(wù),求甲、乙兩工程隊平均每天能完成綠化的面積分別是多少平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】特產(chǎn)店銷售一種水果,其進價每千克40元,按60元出售,平均每天可售100千克,后來經(jīng)過市場調(diào)查發(fā)現(xiàn),單價每降低2元,則平均每天可增加20千克銷量.

1)若該專賣店銷售這種核桃要想平均每天獲利2240元,每千克水果應(yīng)降多少元?

2)若該專賣店銷售這種核桃要想平均每天獲利最大,每千克水果應(yīng)降多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雙峰縣教育局要求各學(xué)校加強對學(xué)生的安全教育,全縣各中小學(xué)校引起高度重視,小剛就本班同學(xué)對安全知識的了解程度進行了一次調(diào)查統(tǒng)計.他將統(tǒng)計結(jié)果分為三類,A:熟悉;B:了解較多;C:一般了解。圖和圖是他采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答以下問題:

(1)求小剛所在的班級共有多少名學(xué)生;

(2)在條形圖中,將表示“一般了解”的部分補充完整‘’

(3)在扇形統(tǒng)計圖中,計算“了解較多”部分所對應(yīng)的扇形圓心角的度數(shù);

(4)如果小剛所在年級共1000名同學(xué),請你估算全年級對安全知識“了解較多”的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,弦ACBD于點E,連接ABCD,BC

1)求證:∠AOB+COD180°;

2)若AB8,CD6,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖象與x軸交于AB兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.

1)求A、BC的坐標(biāo);

2)點M為線段AB上一點(點M不與點A、B重合),過點Mx軸的垂線,與直線AC交于點E,與拋物線交于點P,過點PPQ∥AB交拋物線于點Q,過點QQN⊥x軸于點N.若點P在點Q左邊,當(dāng)矩形PQMN的周長最大時,求△AEM的面積;

3)在(2)的條件下,當(dāng)矩形PMNQ的周長最大時,連接DQ.過拋物線上一點Fy軸的平行線,與直線AC交于點G(點G在點F的上方).FG=DQ,求點F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),P為ABC所在平面上一點,且APB=BPC=CPA=120°,則點P叫做ABC的費馬點.

(1)如果點P為銳角ABC的費馬點,且ABC=60°.

①求證:ABP∽△BCP;

②若PA=3,PC=4,則PB=

(2)已知銳角ABC,分別以AB、AC為邊向外作正ABE和正ACD,CE和BD 相交于P點.如圖(2)

①求CPD的度數(shù);

②求證:P點為ABC的費馬點.

查看答案和解析>>

同步練習(xí)冊答案