【題目】如圖在下面平面直角坐標系中,已知A ,B ,C 三點.其中滿足.
(1)求的值;
(2)如果在第二象限內(nèi)有一點 ,請用含的式子表示四邊形的面積;
(3)在(2)的條件下,是否存在點,使四邊形的面積為△的面積的兩倍?若存在,求出點的坐標,若不存在,請說明理由.
【答案】(1)a=2,b=3,c=4;(2)四邊形ABOP的面積為3-m;(3)存在,點P坐標為
【解析】分析:(1)根據(jù)幾個非負數(shù)和的性質(zhì)得到a-2=0,b-3=0,c-4=0,分別解一元一次方程得到a=2,b=3,b=4;
(2)根據(jù)三角形的面積公式和四邊形ABOP的面積=S△AOP+S△AOB進行計算;
(3)若S四邊形ABOP≥S△AOP,則-m+3≥2××2×(-m),解得m≥-3,則m=-1,-2,-3,然后分別寫出P點的坐標.
詳解:(1)∵|a-2|+(b-3)2+=0,
∴a-2=0,b-3=0,c-4=0,
∴a=2,b=3,b=4;
(2)A點坐標為(0,2),B點坐標為(3,0),
四邊形ABOP的面積=S△AOP+S△AOB
=×2×(-m)+×2×3
=-m+3;
(3)存在.理由如下:
∵S四邊形ABOP≥S△AOP,
∴-m+3≥2××2×(-m),
∴m≥-3,
∵m為負整數(shù),
∴m=-1,-2,-3,
∴點P的坐標為(-1,)或(-2,)或(-3,).
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解學生對三種國慶活動方案的意見,對該校學生進行了一次抽樣調(diào)查(被調(diào)查學生至多贊成其中的一種方案),現(xiàn)將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中提供的信息解答下列問題:
(1)在這次調(diào)查中共調(diào)查了名學生;扇形統(tǒng)計圖中方案1所對應的圓心角的度數(shù)為度;
(2)請把條形統(tǒng)計圖補充完整;
(3)已知該校有1000名學生,試估計該校贊成方案1的學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】三角形ABC與三角形A'B'C'在平面直角坐標系中的位置如圖:
(1)分別寫出下列各點的坐標:A'_____; B'_____;C'_____;
(2)三角形A'B'C'由三角形ABC經(jīng)過怎樣的平移得到?___________;
(3)若點P(a,b)是三角形ABC內(nèi)部一點,則平移后三角形A'B'C'內(nèi)的對應點P'的坐標為_________;
(4)求三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)不等式的基本性質(zhì),把下列不等式化成“x>a”或“x<a”的形式:
(1)4x>3x+5 (2)-2x<17
(3)0.3x<-0.9 (4)x<x-4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,BD⊥AC于點D,E為BC上一點,過E點作EF⊥AC,垂足為F,過點D作DH∥BC交AB于點H.
(1)請你補全圖形。
(2)求證:∠BDH=∠CEF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用適當?shù)姆柋硎鞠铝嘘P系:
(l)a的2倍比a與3的和小; (2)y的一半與5的差是非負數(shù);
(3)x的3倍與1的和小于x的2倍與5的差.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商廈進貨員在蘇州發(fā)現(xiàn)了一種應季圍巾,用8000元購進一批圍巾后,發(fā)現(xiàn)市場還有較大的需求,又在上海用17600元購進了同一種圍巾,數(shù)量恰好是在蘇州所購數(shù)量的2倍,但每條比在蘇州購進的多了4元.問某商廈在蘇州、上海分別購買了多少條圍巾?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com