【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則以下結(jié)論同時成立的是(  )

A. B. C. D.

【答案】C

【解析】

利用拋物線開口方向得到a>0,利用拋物線的對稱軸在直線x=1的右側(cè)得到b<0,b<-2a,即b+2a<0,利用拋物線與y軸交點在x軸下方得到c<0,也可判斷abc>0,利用拋物線與x軸有2個交點可判斷b2-4ac>0,利用x=1可判斷a+b+c<0,利用上述結(jié)論可對各選項進(jìn)行判斷.

∵拋物線開口向上,

a>0,

∵拋物線的對稱軸在直線x=1的右側(cè),

x=->1,

b<0,b<-2a,即b+2a<0,

∵拋物線與y軸交點在x軸下方,

c<0,

abc>0,

∵拋物線與x軸有2個交點,

∴△=b2-4ac>0,

x=1時,y<0,

a+b+c<0.

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20181023日,港珠澳大橋正式開通.港珠澳大橋東起香港口岸人工島,向西止于珠海洪灣,總長約55千米,是粵港澳三地首次合作共建的超大型跨海交通工程.1024日正式通車當(dāng)天,甲乙兩輛巴士同時從香港國際機(jī)場附近的香港口岸人工島出發(fā),已知甲乙兩巴士的速度比是,乙巴士比甲巴士早11分鐘到達(dá)洪灣,求兩車的平均速度各是多少千米/時?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+3與兩坐標(biāo)軸交于A、B兩點,拋物線y=﹣x2+bx+c過A、B兩點,且交x軸的正半軸于點C.

(1)求A、B兩點的坐標(biāo);

(2)求拋物線的解析式和點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交CD于點G,ADAE.若AD5,DE6,則AG的長是( 。

A. 6B. 8C. 10D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對角線AC、BD相交于點O,AB=OB,點E、點F分別是OA、OD的中點,連接EF,CEF=45°,EMBC于點M,EMBD于點N,F(xiàn)N=,則線段BC的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線y=x26x+21.求:

1)直接寫出拋物線y=x26x+21的頂點坐標(biāo);

2)當(dāng)x2時,求y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,然后解答問題:

問題:分解因式:.

解答:把帶入多項式,發(fā)現(xiàn)此多項式的值為0,由此確定多項式中有因式,于是可設(shè),分別求出,的值.再代入,就容易分解多項式,這種分解因式的方法叫做試根法”.

1)求上述式子中的值;

2)請你用試根法分解因式:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,直線l:y=x+mx軸于點A,二次函數(shù)y=ax2﹣3ax+c(a≠0,且a、c是常數(shù))的圖象與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,與直線l交于點D,已知CDx軸平行,且SACD:SABD=3:5.

(1)求點A的坐標(biāo);

(2)求此二次函數(shù)的解析式;

(3)點P為直線l上一動點,將線段AC繞點P順時針旋轉(zhuǎn)α°(0°<α°<360°)得到線段A'C'(點A,A'是對應(yīng)點,點C,C'是對應(yīng)點).請問:是否存在這樣的點P,使得旋轉(zhuǎn)后點A'和點C'分別落在直線l和拋物線y=ax2﹣3ax+c的圖象上?若存在,請直接寫出點A'的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,MN分別為BC,CD的中點,AM=1,AN=2,MAN=60°,AM DC的延長線相交于點E,則AB的長為_____________;

查看答案和解析>>

同步練習(xí)冊答案