【題目】如圖,在平面直角坐標系xOy中,已知點A(﹣31),點B0,5),過點A作直線lAB,過點BBDl,交x軸于點D,再以點B為圓心,BD長為半徑作弧,交直線l于點C(點C位于第四象限),連結BC,CD

1)求線段AB的長.

2)點M是線段BC上一點,且BMCA,求DM的長.

3)點M是線段BC上的動點.

①若點N是線段AC上的動點,且BMCN,求DM+DN的最小值.

②若點N是射線AC上的動點,且BMCN,求DM+DN的最小值(直接寫出答案).

【答案】1AB=5;(2DM=5;(3)①DM+DN的最小值為.②DM+DN的最小值為

【解析】

1)過點Ay軸垂線AE,利用A、B坐標求得AE、BE的長,在RtABE中利用勾股定理即求出AB的長.

2)由BDl得∠DBM=∠BCA,加上BCBD,BMCA,用邊角邊即可證DBM≌△BCA,進而得DMBA5

3)①由邊角邊易證DBM≌△BCN,得DMBN,把DM+DN轉化為求BN+DN.作點B關于直線l的對稱點B',易得當B'、N、D在同一直線上時,DM+DNB'D最。鬃C∠B'BD90°BB'2AB10,只要求得BDBC的長即能求B'D.用HLRtBACRtBOD得∠ABC=∠OBD,轉換得∠ABO=∠ACB,則其正弦值相等.在RtABEsinABE可求,則在RtABC中利用sinACB的值求出BC的長,進而得BDB'D的值.

N在射線AC上運動分兩種情況,第一種即①N在線段AC上,最小值為 .第二種為N在線段AC延長線上,過點BBFDC交直線l于點F,構造平行四邊形BDCF,利用邊角邊證BMF≌△CND,得MFDN,所以當DM、F在同一直線上時,DM+DNDM+MFDF最小.過D作直線l垂線DG,易得DGAB5AGBD .在RtABC中求AC的長,即求得AF的長進而求FG的長,再用勾股定理即可求DF的長為5.比較兩種情況的最小值,更小的值即為答案.

解:(1)過點AAEy軸于點E,如圖1

∴∠AEB90°

A(﹣31),點B0,5

AE3,OE1,OB5

BEOBOE4

AB

2)連接DM,如圖1

BD∥直線l

∴∠DBM=∠BCA

DBMBCA

∴△DBM≌△BCASAS

DMBA5

3)①延長BA到點B',使AB'AB,連接B'D,如圖2

∴直線l垂直平分BB',BB'2AB10

∵點N為直線l上的動點

BNB'N

DBMBCN

∴△DBM≌△BCNSAS

DMBN

DM+DNBN+DNB'N+DN

∴當點D、N、B'在同一直線上時,DM+DNB'N+DNB'D最小

∵直線lAB

∴∠BAC=∠BOD90°

RtBACRtBOD

RtBACRtBODHL

∴∠ABC=∠OBD

∴∠ABC﹣∠OBC=∠OBD﹣∠OBC

即∠ABO=∠CBD

∴∠ABO=∠ACB

RtABE中,sinABO

∴在RtABC中,sinACB

BDBC AB

BD∥直線l

∴∠B'BD180°﹣∠BAC90°

B'D

DM+DN的最小值為

②當點N在線段AC上時,由①可知DM+DN最小值為

當點N在線段AC延長線上時,如圖3,

過點BBFDC交直線l于點F,連接MF、DF,過點DDG⊥直線l于點G

∴四邊形BDCF是平行四邊形

BFCD,CFBD ,∠MBF=∠BCD=∠BDC=∠NCD

在△BMF與△CND

∴△BMF≌△CNDSAS

MFDN

DM+DNDM+MF

∴當D、M、F在同一直線上時,DM+DNDM+MFDF最小

∵∠BAG=∠ABD=∠AGD90°

∴四邊形ABDG是矩形

AGBD,DGAB5

RtABC中,AC

AFCFAC

FGAF+AG 10

DF

5

∴當N在射線AC上運動時,DM+DN的最小值為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某旅行團32人在景區(qū)A游玩,他們由成人、少年和兒童組成.已知兒童10人,成人比少年多12人.

1)求該旅行團中成人與少年分別是多少人?

2)因時間充裕,該團準備讓成人和少年(至少各1名)帶領10名兒童去另一景區(qū)B游玩.景區(qū)B的門票價格為100元/張,成人全票,少年8折,兒童6折,一名成人可以免費攜帶一名兒童.

①若由成人8人和少年5人帶隊,則所需門票的總費用是多少元?

②若剩余經(jīng)費只有1200元可用于購票,在不超額的前提下,最多可以安排成人和少年共多少人帶隊?求所有滿足條件的方案,并指出哪種方案購票費用最少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某家庭記錄了未使用節(jié)水龍頭50天的日用水量(單位:m3)和使用了節(jié)木龍頭50天的日用水量,得到頻數(shù)分布表如下:

1未使用節(jié)水龍頭50天的日用水量頻數(shù)分布表

日用水量x

0≤x<0.1

0.1≤x<0.2

0.2≤x<0.3

0.3≤x<0.4

0.4≤x<0.5

0.5≤x<0.6

0.6≤x≤0.7

頻數(shù)

1

3

2

4

9

26

5

2使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表

日用水量x

0≤x<0.1

0.1≤x<0.2

0.2≤x<0.3

0.3≤x<0.4

0.4≤x<0.5

0.5≤x<0.6

頻數(shù)

1

5

13

10

16

5

(1)估計該家庭使用節(jié)水龍頭后,日用水量小于0.3 m3的概率;

(2)估計該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在范圍的組中值作代表.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校文學社為了解學生課外閱讀情況,抽樣調查了部分學生每周用于課外閱讀的時間,過程如下:

數(shù)據(jù)收集:從全校隨機抽取20名學生,進行了每周用于課外閱讀時間的調查,數(shù)據(jù)如下(單位:min)

30

60

81

50

40

110

130

146

90

100

60

81

120

140

70

81

10

20

100

81

整理數(shù)據(jù):按如下分段整理樣本數(shù)據(jù)并補全表格:

課外閱讀時間x(min)

0≤x<40

40≤x<80

80≤x<120

120≤x<160

等級

D

C

B

A

人數(shù)

3

____

8

____

分析數(shù)據(jù):補全下列表格中的統(tǒng)計量:

平均數(shù)

中位數(shù)

眾數(shù)

80

____

____

得出結論:

⑴用樣本中的統(tǒng)計量估計該校學生每周用于課外閱讀時間的情況等級為_____

⑵如果該,F(xiàn)有學生400人,估計等級為“B”的學生有多少人?

⑶假設平均閱讀一本課外書的時間為320分鐘,請你選擇樣本中的一種統(tǒng)計量估計該校學生每人一年(52周計算)平均閱讀多少本課外書?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠MAN30°,點B在邊AM上,且AB4,點P從點A出發(fā)沿射線AN方向運動,在邊AN上取點C(點C在點P右側),連結BP,BC.設PCm,當BPC成為等腰三角形的個數(shù)恰好有3個時,m的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yax22ax2的圖象(記為拋物線C1)頂點為M,直線ly2xax軸,y軸分別交于A,B

1)對于拋物線C1,以下結論正確的是   ;

對稱軸是:直線x1;頂點坐標(1,﹣a2);拋物線一定經(jīng)過兩個定點.

2)當a0時,設△ABM的面積為S,求Sa的函數(shù)關系;

3)將二次函數(shù)yax22ax2的圖象C1繞點Pt,﹣2)旋轉180°得到二次函數(shù)的圖象(記為拋物線C2),頂點為N

當﹣2x1時,旋轉前后的兩個二次函數(shù)y的值都會隨x的增大而減小,求t的取值范圍;

a1時,點Q是拋物線C1上的一點,點Q在拋物線C2上的對應點為Q',試探究四邊形QMQ'N能否為正方形?若能,求出t的值,若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( 。

A. 要了解一批燈泡的使用壽命,采用全面調查的方式

B. 要了解全市居民對環(huán)境的保護意識,采用抽樣調查的方式

C. 一個游戲的中獎率是1%,則做100次這樣的游戲一定會中獎

D. 若甲組數(shù)據(jù)的方差S20.05,乙組數(shù)據(jù)的方差S20.1,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解高一年級住校生在校期間的月生活支出情況,從高一年級600名住校學生中隨機抽取部分學生,對他們今年4月份的生活支出情況進行調查統(tǒng)計,并繪制成如下統(tǒng)計圖表:

組別

月生活支出x(單位:元)

頻數(shù)(人數(shù))

頻率

第一組

x300

4

0.10

第二組

300x350

2

0.05

第三組

350x400

16

n

第四組

400x450

m

0.30

第五組

450x500

4

0.10

第六組

x500

2

0.05

請根據(jù)圖表中所給的信息,解答下列問題:

1)在這次調查中共隨機抽取了   名學生,圖表中的m   ,n   ;

2)請估計該校高一年級600名住校學生今年4月份生活支出低于350元的學生人數(shù);

3)現(xiàn)有一些愛心人士有意愿資助該校家庭困難的學生,學校在本次調查的基礎上,經(jīng)過進一步核實,確認高一(2)班有A,B,C三名學生家庭困難,其中A,B為女生,C為男生.李阿姨申請資助他們中的兩名,于是學校讓李阿姨從AB,C三名學生中依次隨機抽取兩名學生進行資助,請用列表法(或樹狀圖法)求恰好抽到A,B兩名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtAOB中,∠AOB=90°,OA=3,OB=2,將RtAOB繞點O順時針旋轉90°后得RtFOE,將線段EF繞點E逆時針旋轉90°后得線段ED,分別以O,E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是_____

查看答案和解析>>

同步練習冊答案