【題目】如圖,AB⊥AC,CD、BE分別是△ABC的角平分線(xiàn),AG∥BC,AG⊥BG,下列結(jié)論:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°,其中正確的結(jié)論有( 。﹤(gè)
A.1B.2C.3D.4
【答案】C
【解析】
由已知條件可知∠ABC+∠ACB=90°,又因?yàn)?/span>CD、BE分別是△ABC的角平分線(xiàn),所以得到∠FBC+∠FCB=45°,所以求出∠CFB=135°;有平行線(xiàn)的性質(zhì)可得到:∠ABG=∠ACB,∠BAG=2∠ABF.所以可知選項(xiàng)①③④正確.
∵AB⊥AC.
∴∠BAC=90°,
∵∠BAC+∠ABC+∠ACB=180°,
∴∠ABC+∠ACB=90°
∵CD、BE分別是△ABC的角平分線(xiàn),
∴2∠FBC+2∠FCB=90°
∴∠FBC+∠FCB=45°
∴∠BFC=135°故④正確.
∵AG∥BC,
∴∠BAG=∠ABC
∵∠ABC=2∠ABF
∴∠BAG=2∠ABF 故①正確.
∵AB⊥AC,
∴∠ABC+∠ACB=90°,
∵AG⊥BG,
∴∠ABG+∠GAB=90°
∵∠BAG=∠ABC,
∴∠ABG=∠ACB 故③正確.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中.
(1)請(qǐng)直接寫(xiě)出點(diǎn)、兩點(diǎn)的坐標(biāo)::___________;:___________;
(2)若把向上平移3個(gè)單位,再向右平移2個(gè)單位得,請(qǐng)?jiān)谏蠄D中畫(huà)出,并寫(xiě)出點(diǎn)的坐標(biāo)___________;
(3)求的面積是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形ABCD中,AB=3,BC=4,點(diǎn)E是BC邊上任一點(diǎn),連接AE,把∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處,當(dāng)CE的長(zhǎng)為_____時(shí),△CEB′恰好為直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解學(xué)生每周課外閱讀時(shí)間的情況,對(duì)3000名學(xué)生采用隨機(jī)抽樣的方式進(jìn)行了問(wèn)卷調(diào)查,調(diào)查結(jié)果分為“2小時(shí)以?xún)?nèi)”、“2小時(shí)~3小時(shí)”、“3小時(shí)~4小時(shí)”和“4小時(shí)以上”四個(gè)等級(jí),分別用A、B、C、D表示,根據(jù)調(diào)查結(jié)果繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,由圖中所給出的信息解答下列問(wèn)題:
(1)x= ,樣本容量是 ;
(2)將不完整的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)請(qǐng)估計(jì)該校3000名學(xué)生中每周課外閱讀時(shí)間在“2小時(shí)以上”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地計(jì)劃用120~180天(含120與180天)的時(shí)間建設(shè)一項(xiàng)水利工程,工程需要運(yùn)送的土石方總量為360萬(wàn)米3.
(1)寫(xiě)出運(yùn)輸公司完成任務(wù)所需的時(shí)間y(單位:天)與平均每天的工作量x(單位:萬(wàn)米3)之間的函數(shù)關(guān)系式.并給出自變量x的取值范圍;
(2)由于工程進(jìn)度的需要,實(shí)際平均每天運(yùn)送土石方比原計(jì)劃多20%,工期比原計(jì)劃減少了24天,原計(jì)劃和實(shí)際平均每天運(yùn)送土石方各是多少萬(wàn)米3?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)生小明、小華為了解本校八年級(jí)學(xué)生每周上網(wǎng)的時(shí)間,各自進(jìn)行了抽樣調(diào)查.小明調(diào)查了八年級(jí)信息技術(shù)興趣小組中40名學(xué)生每周上網(wǎng)的時(shí)間,算得這些學(xué)生平均每周上網(wǎng)時(shí)間為2.5h;小華從全體320名八年級(jí)學(xué)生名單中隨機(jī)抽取了40名學(xué)生,調(diào)查了他們每周上網(wǎng)的時(shí)間,算得這些學(xué)生平均每周上網(wǎng)時(shí)間為1.2h.小明與小華整理各自樣本數(shù)據(jù),如表所示.
時(shí)間段(h/周) | 小明抽樣人數(shù) | 小華抽樣人數(shù) |
0~1 | 6 | 22 |
1~2 | 10 | 10 |
2~3 | 16 | 6 |
3~4 | 8 | 2 |
(每組可含最低值,不含最高值)
請(qǐng)根據(jù)上述信息,回答下列問(wèn)題:
(1)你認(rèn)為哪位學(xué)生抽取的樣本具有代表性?_____.
估計(jì)該校全體八年級(jí)學(xué)生平均每周上網(wǎng)時(shí)間為_____h;
(2)在具有代表性的樣本中,中位數(shù)所在的時(shí)間段是_____h/周;
(3)專(zhuān)家建議每周上網(wǎng)2h以上(含2h)的同學(xué)應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間,根據(jù)具有代表性的樣本估計(jì),該校全體八年級(jí)學(xué)生中有多少名學(xué)生應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)長(zhǎng)方體紙盒的平面展開(kāi)圖,已知紙盒中相對(duì)兩個(gè)面上的數(shù)互為相反數(shù).
(1)填空:a= ,b= ,c= ;
(2)先化簡(jiǎn),再求值:5a2b﹣[2a2b﹣3(2abc﹣a2b)]+4abc.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,并解決后面的問(wèn)題.
材料:對(duì)數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾(J.Npler,1550-1617年),納皮爾發(fā)明對(duì)數(shù)是在指數(shù)書(shū)寫(xiě)方式之前,直到18世紀(jì)瑞士數(shù)學(xué)家歐拉(Evler,1707-1783)才發(fā)現(xiàn)指數(shù)與對(duì)數(shù)之間的聯(lián)系.我們知道,n個(gè)相同的因數(shù)a相乘記為,如,此時(shí),3叫做以2為底8的對(duì)數(shù),記為,即.
一般地,若(且,),則n叫做以a為底b的對(duì)數(shù),記為,即.如,則4叫做以3為底81的對(duì)數(shù),記為,即.
(1)計(jì)算下列各對(duì)數(shù)的值:________,________,________;
(2)通過(guò)觀察(1)中三數(shù)、、之間滿(mǎn)足的關(guān)系式是________;
(3)拓展延伸;下面這個(gè)一般性的結(jié)論成立嗎?我們來(lái)證明
(且,,)
證明:設(shè),,
由對(duì)數(shù)的定義得:,,
∴,
∴,
又∵,,
∴(且,,).
(4)仿照(3)的證明,你能證明下面的一般性結(jié)論嗎?
(且,,).
(5)計(jì)算:的值為________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知y=(m2+m)+(m﹣3)x+m2是x的二次函數(shù),求出它的解析式.
(2)用配方法求二次函數(shù)y=﹣x2+5x﹣7的頂點(diǎn)坐標(biāo)并求出函數(shù)的最大值或最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com