【題目】解下列方程:
(1)(x―3)2=(3x+1)2 (2)x2-8x=-12
(3)3x2-4x-1=0(用配方法) (4)5x2―7x+1=0
【答案】(1)x1=-2,x2=;(2)x1=2,x2=6;(3), ;(4), .
【解析】試題分析:(1)用直接開平方法解答即可;
(2)移項后,分解因式即可;
(3)用配方法解答即可;
(4)用公式法解答即可.
試題解析:解:(1)(x―3)2=(3x+1)2 ,
x-3=±(3x+1),
x-3=3x+1或x-3=-3x-1,
x1=-2,x2=;
(2)x2-8x=-12,
x2-8x+12=0,
(x-2)(x-6)=0,
x1=2,x2=6;
(3)3x2-4x-1=0,
,
,
,
,
, ;
(4)5x2―7x+1=0,
a=5,b=-7,c=1,b2-4ac=(-7)2-4×5×1=29,
,
,
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AE上一動點(不與點A,E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.以下五個結(jié)論:
①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°.
其中正確的結(jié)論的個數(shù)是( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖①,直線AB∥CD,E是AB與CD之間的一點,連接BE,CE,可以發(fā)現(xiàn)∠B+∠C=∠BEC.
請把下面的證明過程補充完整:
證明:過點E作EF∥AB,
∵AB∥DC(已知),EF∥AB(輔助線的作法),
∴EF∥DC( )
∴∠C=∠CEF.( )
∵EF∥AB,∴∠B=∠BEF(同理),
∴∠B+∠C= (等式性質(zhì))
即∠B+∠C=∠BEC.
(2)拓展探究:如果點E運動到圖②所示的位置,其他條件不變,求證:∠B+∠C=360°﹣∠BEC.
(3)解決問題:如圖③,AB∥DC,試寫出∠A、∠C、∠AEC的數(shù)量關(guān)系 .(直接寫出結(jié)論,不用寫計算過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90,AC=BC=2,E、F為線段AB上兩動點,且∠ECF=45°,過點E、F分別作BC、AC的垂線相交于點D,垂足分別為H、G.現(xiàn)有以下結(jié)論:①當(dāng)點E與點B重合時,DH=1;②GF+EH=EF;③AF2+BE2=EF2;④DGDH=2,其中正確結(jié)論為( )
A. ①②③ B. ①③④ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,己如FG⊥AB,、CD⊥AB,垂足分別為G、D,∠1=∠2.
求證:∠CED+∠ACB=180°請將下面的證明過程補充完整.
證明:∵FG⊥AB,CD⊥AB(已知),
∴∠FGB=∠CDB=90°(垂直的定義)
∴GF∥CD(___________________________)
∵GF∥CD(已證)
∴∠2=∠BCD(___________________________)
又∵∠1=∠2(已知),
∴∠1=∠BCD(___________________________)
∴___________________________,(___________________________)
∴∠CED+∠ACB=180°(___________________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點B作⊙O的切線交CD的延長線于點E,BC=6, .求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點E,點G為AD的中點,連接CG,CG的延長線交BA的延長線于點F,連接FD.
(1)求證:AB=AF;
(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若自然數(shù)使得三個數(shù)的加法運算“”產(chǎn)生進位現(xiàn)象,則稱為“連加進位數(shù)”.例如:2不是“連加進位數(shù)”,因為不產(chǎn)生進位現(xiàn)象;4是“連加進位數(shù)”,因為產(chǎn)生進位現(xiàn)象;51是“連加進位數(shù)”,因為產(chǎn)生進位現(xiàn)象.如果從0,1,2,…,99這100個自然數(shù)中任取一個數(shù),取到“連加進位數(shù)”的個數(shù)有( )個
A.88B.89C.90D.91
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com