【題目】解下列方程:

1)(x―32=(3x12 2x28x-12

33x24x10(用配方法)45x2―7x10

【答案】1x1=-2,x2=;(2x1=2x2=6;(3, ;(4,

【解析】試題分析:(1)用直接開平方法解答即可;

2)移項(xiàng)后,分解因式即可;

3)用配方法解答即可;

4)用公式法解答即可

試題解析:解:1)(x―32=(3x12 ,

x-3=±3x+1),

x-3=3x+1x-3=-3x-1,

x1=-2,x2=;

2x28x-12,

x2-8x+12=0,

x-2)(x-6=0,

x1=2,x2=6;

33x24x10,

,

,

,

,

, ;

45x2―7x10,

a=5b=-7,c=1b2-4ac=-72-4×5×1=29,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)AE重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,ADBE交于點(diǎn)O,ADBC交于點(diǎn)P,BECD交于點(diǎn)Q,連接PQ.以下五個(gè)結(jié)論:

①AD=BE;②PQ∥AE③AP=BQ;④DE=DP; ⑤∠AOB=60°

其中正確的結(jié)論的個(gè)數(shù)是( )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題發(fā)現(xiàn):如圖①,直線ABCDEABCD之間的一點(diǎn),連接BECE,可以發(fā)現(xiàn)∠B+∠C=∠BEC

請(qǐng)把下面的證明過程補(bǔ)充完整:

證明:過點(diǎn)EEFAB

ABDC(已知),EFAB(輔助線的作法),

EFDC   

∴∠C=∠CEF.(   

EFAB,∴∠B=∠BEF(同理),

∴∠B+∠C=    (等式性質(zhì))

即∠B+∠C=∠BEC

2)拓展探究:如果點(diǎn)E運(yùn)動(dòng)到圖②所示的位置,其他條件不變,求證:∠B+∠C=360°﹣∠BEC

3)解決問題:如圖③,ABDC,試寫出∠A、∠C、∠AEC的數(shù)量關(guān)系    .(直接寫出結(jié)論,不用寫計(jì)算過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形的周長為,兩個(gè)鄰角的比是,則這個(gè)菱形的面積是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90,ACBC=2,EF為線段AB上兩動(dòng)點(diǎn),且∠ECF=45°,過點(diǎn)E、F分別作BCAC的垂線相交于點(diǎn)D,垂足分別為H、G.現(xiàn)有以下結(jié)論:①當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),DH=1;②GFEHEF;③AF2BE2EF2;④DGDH=2,其中正確結(jié)論為( )

A. ①②③ B. ①③④ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,己如FGAB,、CDAB,垂足分別為G、D,∠1=∠2

求證:∠CED+∠ACB180°請(qǐng)將下面的證明過程補(bǔ)充完整.

證明:∵FGAB,CDAB(已知),

∴∠FGB=∠CDB90°(垂直的定義)

GFCD(___________________________)

GFCD(已證)

∴∠2=∠BCD(___________________________)

又∵∠1=∠2(已知)

∴∠1=∠BCD(___________________________)

___________________________,(___________________________)

∴∠CED+∠ACB180°___________________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長線上,且∠CDA=∠CBD.

(1)求證:CD是⊙O的切線;

(2)過點(diǎn)B作⊙O的切線交CD的延長線于點(diǎn)E,BC=6, .求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,平行四邊形ABCD,對(duì)角線AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長線交BA的延長線于點(diǎn)F,連接FD.

(1)求證:AB=AF;

(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若自然數(shù)使得三個(gè)數(shù)的加法運(yùn)算產(chǎn)生進(jìn)位現(xiàn)象,則稱連加進(jìn)位數(shù).例如:2不是連加進(jìn)位數(shù),因?yàn)?/span>不產(chǎn)生進(jìn)位現(xiàn)象;4連加進(jìn)位數(shù),因?yàn)?/span>產(chǎn)生進(jìn)位現(xiàn)象;51連加進(jìn)位數(shù),因?yàn)?/span>產(chǎn)生進(jìn)位現(xiàn)象.如果從0,12,,99100個(gè)自然數(shù)中任取一個(gè)數(shù),取到連加進(jìn)位數(shù)的個(gè)數(shù)有( )個(gè)

A.88B.89C.90D.91

查看答案和解析>>

同步練習(xí)冊(cè)答案