【題目】如圖,已知矩形OABC,點(diǎn)P在邊OA上(不與端點(diǎn)重合),點(diǎn)Q在邊CO上(不與端點(diǎn)重合).
(1)如圖(1),若∠BPQ=90°,且△OPQ與△PAB和△QPB相似,請(qǐng)寫(xiě)出表示這三個(gè)三角形相似的式子,并探究此時(shí)線(xiàn)段OQ、QB、BA之間的數(shù)量關(guān)系.
(2)若∠PQB=90°,且△OPQ與△PAB、△QPB都相似,如圖(2),請(qǐng)重新寫(xiě)出表示這三個(gè)三角形相似的式子,并證明AB:OA=2:3.
(3)在(1)中,若OA=8,OC=8,OP=CQ.以矩形OABC的兩邊OA、OC所在的直線(xiàn)分別為x軸和y軸,建立平面直角坐標(biāo)系,如圖(3),若某拋物線(xiàn)頂點(diǎn)為P,點(diǎn)B在拋物線(xiàn)上.
①求此拋物線(xiàn)的解析式.
②過(guò)線(xiàn)段BP上一動(dòng)點(diǎn)M(點(diǎn)M與點(diǎn)P、B不重合),作y軸的平行線(xiàn)交拋物線(xiàn)于點(diǎn)N,若記點(diǎn)M的橫坐標(biāo)為m,試求線(xiàn)段MN的長(zhǎng)L與m之間的函數(shù)關(guān)系式,畫(huà)出該函數(shù)的示意圖,并指出m取何值時(shí),L有最大值,最大值是多少?
【答案】(1) BQ=OQ+AB;(2)見(jiàn)解析;(3)①y=x2﹣2x+8;②當(dāng)m取6時(shí),L有最大值,且最大值為 2
【解析】
(1)要寫(xiě)成三個(gè)三角形相似的式子,需要先找出相等的對(duì)應(yīng)角,首先由BC∥OA,確定∠CBP=∠BPA>∠QBP,那么三個(gè)相似三角形的一組對(duì)應(yīng)角應(yīng)該是:∠QBP、∠QPO、∠ABP,顯然能得出∠QBP=∠ABP、∠OQP=∠BQP,那么過(guò)P作BQ的垂線(xiàn),根據(jù)角平分線(xiàn)定理即可判斷出OQ、QB、BA三者之間的數(shù)量關(guān)系.
(2)同(1),先根據(jù)圖示確定相似三角形的對(duì)應(yīng)角,然后根據(jù)三個(gè)三角形的對(duì)應(yīng)頂點(diǎn)寫(xiě)出三角形相似的式子;在△BQP、△BPA中,有公共邊BP,可確定兩者全等,那么BQ=AB,因此確定出∠CBQ的度數(shù),即可確定AB、BC(OA)的比例關(guān)系,那么可以從△OQP、△CQB、△ABP這三個(gè)相似三角形入手.
(3)①首先結(jié)合(1)的解題過(guò)程,確定OP的長(zhǎng),進(jìn)而得出點(diǎn)P的坐標(biāo),再利用待定系數(shù)法確定拋物線(xiàn)的解析式;
②首先利用待定系數(shù)法求出直線(xiàn)BP的解析式,然后根據(jù)直線(xiàn)BP、拋物線(xiàn)的解析式,用點(diǎn)M的橫坐標(biāo)表示出點(diǎn)M、N的縱坐標(biāo),兩點(diǎn)縱坐標(biāo)的差即為L的函數(shù)表達(dá)式,再根據(jù)函數(shù)的性質(zhì)進(jìn)行判斷即可.
(1)△OPQ和△ABP中,∵∠OPQ+∠APB=90°,且∠APB+∠ABP=90°,
∴∠OPQ=∠ABP;
△BPQ和△ABP中,∵BC∥OA,∴∠APB=∠CBP>∠PBQ,
若兩個(gè)三角形相似,則:∠PBQ=∠ABP;
∴∠OPQ=∠ABP=∠PBQ
又∵∠O=∠A=∠QPB=90°,
∴△OPQ∽△ABP∽△PBQ.
在△OPQ和△PBQ中,∠OQP=∠PQB,過(guò)P作PD⊥BQ于D,則 OQ=QD;
同理,可得:BD=AB,
∴BQ=QD+BD=OQ+AB.
(2)同(1)可確定∠QBP=∠ABP,由圖知:∠QPO=∠BPA
∴∠OQP=∠ABP=∠QBP,又∠BQP=∠QOP=∠BAP=90°
∴△OPQ∽△APB∽△QPB.
由(1)的結(jié)論知:∠OQP=∠QBC=∠QBP=∠ABP,且∠ABC=90°,
∴∠QBC=30°,則 BQ:CB=2:=2:3;
由△QPB∽△APB,且BP=BP,所以△QPB≌△APB,得:AB=BQ;
∴AB:BC=2:3,即 AB:OA=2:3.
(3)①由(1)的解答過(guò)程知:若△OPQ與△PAB和△QPB相似,則必須滿(mǎn)足的條件是∠QPB=90゜;
此時(shí)∠OQP=∠BQP、∠QBP=∠ABP,由(1)題圖可知:OP=AP=PD;
∴OP=AP=OA=4,即 P(4,0);
設(shè)拋物線(xiàn)的解析式為:y=a(x﹣4)2,代入點(diǎn)B(8,8),得:
a(8﹣4)2=8,解得 a=
∴拋物線(xiàn)的解析式為:y=(x﹣4)2=x2﹣2x+8.
②設(shè)直線(xiàn)BP的解析式為:y=kx+b,代入B(8,8)、P(4,0),得:
,解得
∴直線(xiàn)BP:y=x﹣8.
已知點(diǎn)M的橫坐標(biāo)為m,則 M(m, m﹣8)、N(m, m2﹣2m+8),則有:
MN的長(zhǎng):L=m﹣8﹣(m2﹣2m+8)=﹣m2+3m﹣16(4<m<8)(如右圖)
配方,得:L=﹣(m2﹣12m+72)+2=﹣(m﹣6)2+2,
∴當(dāng)m取6時(shí),L有最大值,且最大值為 2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“書(shū)香八桂,閱讀圓夢(mèng)”讀書(shū)活動(dòng)中,某中學(xué)設(shè)置了書(shū)法、國(guó)學(xué)誦讀、演講、征文四個(gè)比賽項(xiàng)目(每人只參加一個(gè)項(xiàng)目),九(2)班全班同學(xué)都參加了比賽,該班班長(zhǎng)為了了解本班同學(xué)參加各項(xiàng)比賽的情況,收集整理數(shù)據(jù)后,繪制以下不完整的折線(xiàn)統(tǒng)計(jì)圖(圖1)和扇形統(tǒng)計(jì)圖(圖2),根據(jù)圖表中的信息解答下列各題:
(1)請(qǐng)求出九(2)全班人數(shù);
(2)請(qǐng)把折線(xiàn)統(tǒng)計(jì)圖補(bǔ)充完整;
(3)南南和寧寧參加了比賽,請(qǐng)用“列表法”或“畫(huà)樹(shù)狀圖法”求出他們參加的比賽項(xiàng)目相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們把一個(gè)半圓與拋物線(xiàn)的一部分合成的封閉圖形稱(chēng)為“蛋圓”,如果一條直線(xiàn)與“蛋圓”只有一個(gè)交點(diǎn),那么這條直線(xiàn)叫做“蛋圓”的切線(xiàn)。如圖,點(diǎn)A、B、C、D分別是“蛋圓”與坐標(biāo)軸的交點(diǎn),點(diǎn)D的坐標(biāo)為(0,-3)AB為半圓直徑,半圓圓心M(1,0),半徑為2,則經(jīng)過(guò)點(diǎn)D的“蛋圓”的切線(xiàn)的解析式為__________________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在四邊形ABCD中,點(diǎn)E、F是對(duì)角線(xiàn)BD上的兩點(diǎn),且BE=FD.
(1)若四邊形AECF是平行四邊形,求證:四邊形ABCD是平行四邊形;
(2)若四邊形AECF是菱形,那么四邊形ABCD也是菱形嗎?為什么?
(3)若四邊形AECF是矩形,試判斷四邊形ABCD是否為矩形,不必寫(xiě)理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)y=的圖象與反比例函數(shù)y=的圖象交于A(a,﹣2),B兩點(diǎn).
(1)反比例函數(shù)的解析式為 ,點(diǎn)B的坐標(biāo)為 ;
(2)觀(guān)察圖象,直接寫(xiě)出﹣<0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】心理學(xué)家發(fā)現(xiàn):課堂上,學(xué)生對(duì)概念的接受能力s與提出概念的時(shí)間t(單位:min)之間近似滿(mǎn)足函數(shù)關(guān)系s=at2+bt+c(a≠0),s值越大,表示接受能力越強(qiáng).如圖記錄了學(xué)生學(xué)習(xí)某概念時(shí)t與s的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出當(dāng)學(xué)生接受能力最強(qiáng)時(shí),提出概念的時(shí)間為( )
A. 8min B. 13min C. 20min D. 25min
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD中,將邊AB所在直線(xiàn)繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)一個(gè)角度α得到直線(xiàn)AM,過(guò)點(diǎn)C作CE⊥AM,垂足為E,連接BE.
(1)當(dāng)0°<α<45°時(shí),設(shè)AM交BC于點(diǎn)F,
①如圖1,若α=35°,則∠BCE= °;
②如圖2,用等式表示線(xiàn)段AE,BE,CE之間的數(shù)量關(guān)系,并證明;
(2)當(dāng)45°<α<90°時(shí)(如圖3),請(qǐng)直接用等式表示線(xiàn)段AE,BE,CE之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)請(qǐng)畫(huà)出△ABC繞O點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到△A1B1C1,請(qǐng)畫(huà)出△A1B1C1.
(2)在x軸上求作一點(diǎn)P,使△PA1C1的周長(zhǎng)最小,并直接寫(xiě)出P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,O是邊AC上一點(diǎn),以O為圓心,以OA為半徑的圓分別交AB、AC于點(diǎn)E、D,在BC的延長(zhǎng)線(xiàn)上取點(diǎn)F,使得BF=EF.
(1)判斷直線(xiàn)EF與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若∠A=30°,求證:DG=DA;
(3)若∠A=30°,且圖中陰影部分的面積等于2,求⊙O的半徑的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com