【題目】中華文明,源遠(yuǎn)流長;中華漢字,寓意深廣.為了傳承優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校1000名學(xué)生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績均不低于50分.為了更好地了解本次大賽的成績分布情況,隨機(jī)抽取了200名學(xué)生的成績(成績取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計圖表:

成績/

頻數(shù)

頻率

10

0.05

20

0.10

30

0.30

80

0.40

請根據(jù)所給的信息,解答下列問題:

1_____,_____

2)請補(bǔ)全頻數(shù)分布直方圖;

3)這次比賽成績的中位數(shù)會落在______分?jǐn)?shù)段;

4)若成績在90分以上(包括90分)的為優(yōu)等,則該校參加這次比賽的1000名學(xué)生中成績優(yōu)等的大約有多少人?

【答案】160;0.15;(2)補(bǔ)圖見解析;(3;(4)大約有400人.

【解析】

1)根據(jù)總?cè)藬?shù)×頻率=頻數(shù)即可求出ab點值;

2)根據(jù)a值補(bǔ)全頻數(shù)分布直方圖即可;

3)根據(jù)中位數(shù)點定義求出中位數(shù)即可得答案;

4)用1000乘以90分以上(包括90分)的人數(shù)所占百分比即可得答案.

1a=200×0.30=60

b==0.15,

故答案為:600.15

2)∵a=60,

∴補(bǔ)全頻數(shù)分布直方圖如下:

3)把這組數(shù)據(jù)從小到大排列,中間兩個數(shù)在分?jǐn)?shù)段,

∴這次比賽成績的中位數(shù)會落在分?jǐn)?shù)段;

故答案為:

41000×=400(人),

答:參加這次比賽的1000名學(xué)生中成績優(yōu)等的大約有400人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A=∠B,AE=BE,點DAC邊上,∠1=∠2AEBD相交于點O

1)求證:AECBED;

2)若∠1=42°,求BDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸相交于點,與軸相交于、兩點,點是線段上的一個動點,過軸交于點,交拋物線于點(點在點的左側(cè)).

(1)求拋物線的解析式.

(2)當(dāng)四邊形是平行四邊形時,求點的坐標(biāo).

(3)設(shè)的面積為,的面積為,當(dāng)時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+x+cx軸交于點A6,0),C(﹣20),與y軸交于點B,拋物線的頂點為D,對稱軸交AB于點E,交x軸于點F

1)求拋物線的解析式;

2P是拋物線上對稱軸左側(cè)一點,連接EP,若tanBEP,求點P的坐標(biāo);

3M是直線CD上一點,N是拋物線上一點,試判斷是否存在這樣的點N,使得以點B,EM,N為頂點的四邊形是平行四邊形,若存在,請直接寫出點N的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,以BC的中點O為圓心的分別與AB,AC相切于D,E兩點,則的長為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)發(fā)現(xiàn)

如圖,點為線段外一動點,且,.

填空:當(dāng)點位于____________時,線段的長取得最大值,且最大值為_________.(用含,的式子表示)

(2)應(yīng)用

為線段外一動點,且,.如圖所示,分別以,為邊,作等邊三角形和等邊三角形,連接.

找出圖中與相等的線段,并說明理由;

直接寫出線段長的最大值.

(3)拓展

如圖,在平面直角坐標(biāo)系中,點的坐標(biāo)為,點的坐標(biāo)為,點為線段外一動點,且,,,求線段長的最大值及此時點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,在平面直角坐標(biāo)系中,拋物線軸交于點、右),與軸交于點,且

1)求拋物線的解析式;

2)如圖2,點在第一象限拋物線上,連接,若,求點的坐標(biāo);

3)在(2)的條件下,如圖3,過點軸,線段經(jīng)過點,與拋物線交于點,連接、,點在線段上,連接,交于點,點上,連接,交于點,若,,,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E AB 上的一點,連接DE,過點AAFDE,垂直為F.圓O經(jīng)過點C ,D F,且與AD相交于點G

(1)求證,△AFG∽△DFC

(2)AB=3,BC=5,AE=1,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是矩形,四邊形ADEF是正方形,點A、Dx軸的負(fù)半軸上,點Cy軸的正半軸上,點FAB上,點B、E在反比例函數(shù)yk為常數(shù),k0)的圖象上,正方形ADEF的面積為4,且BF2AF,則k值為_____

查看答案和解析>>

同步練習(xí)冊答案