【題目】如圖,濕地景區(qū)岸邊有三個(gè)觀景臺(tái)A、B、C,已知AB=1400米,AC=1000米,B點(diǎn)位于A點(diǎn)的南偏西60.7°方向,C點(diǎn)位于A點(diǎn)的南偏東66.1°方向.

(1)求△ABC的面積;
(2)景區(qū)規(guī)劃在線段BC的中點(diǎn)D處修建一個(gè)湖心亭,并修建觀景棧道AD,試求A、D間的距離.(結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41, ≈1.414).

【答案】
(1)

解:作CE⊥BA于E.

在Rt△AEC中,∠CAE=180°﹣60.7°﹣66.1°=53.2°,

∴CE=ACsin53.2°≈1000×0.8=800米.

∴SABC= ABCE= ×1400×800=560000平方米.


(2)

解:連接AD,作DF⊥AB于F.,則DF∥CE.

∵BD=CD,DF∥CE,

∴BF=EF,

∴DF= CE=400米,

∵AE=ACcos53.2°≈600米,

∴BE=AB+AE=2000米,

∴AF= EB﹣AE=400米,

在Rt△ADF中,AD= =400 =565.6米.


【解析】(1)作CE⊥BA于E.在Rt△ACE中,求出CE即可解決問(wèn)題;(2)接AD,作DF⊥AB于F,則DF∥CE.首先求出DF、AF,再在Rt△ADF中求出AD即可;
【考點(diǎn)精析】根據(jù)題目的已知條件,利用關(guān)于方向角問(wèn)題的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握指北或指南方向線與目標(biāo)方向 線所成的小于90°的水平角,叫做方向角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y1=mx2+(m﹣3)x﹣3(m>0)與x軸交于A、B兩點(diǎn),且點(diǎn)A在點(diǎn)B的左側(cè),與y軸交于點(diǎn)C,OB=OC.

(1)求這條拋物線的表達(dá)式;
(2)將拋物線y1向左平移n(n>0)個(gè)單位,記平移后y隨著x的增大而增大的部分為P,若點(diǎn)C在直線y2=﹣3x+t上,直線y2向下平移n個(gè)單位,當(dāng)平移后的直線與P有公共點(diǎn)時(shí),求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O為菱形ABCD對(duì)角線的交點(diǎn),DE∥AC,CE∥BD.
(1)試判斷四邊形OCED的形狀,并說(shuō)明理由;
(2)若AC=6,BD=8,求線段OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為二次函數(shù)y=ax2+bx+c的圖象,在下列說(shuō)法中: ①ac<0;
②方程ax2+bx+c=0的根是x1=﹣1,x2=3;
③a+b+c>0;
④當(dāng)x>1時(shí),y隨著x的增大而增大.
正確的說(shuō)法有 . (請(qǐng)寫(xiě)出所有正確的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉行了“文明在我身邊”攝影比賽.已知每幅參賽作品成績(jī)記為x分(60≤x≤100).校方從600幅參賽作品中隨機(jī)抽取了部分參賽作品,統(tǒng)計(jì)了它們的成績(jī),并繪制了如下不完整的統(tǒng)計(jì)圖表.
“文明在我身邊”攝影比賽成績(jī)統(tǒng)計(jì)表

分?jǐn)?shù)段

頻數(shù)

頻率

60≤x<70

18

0.36

70≤x<80

17

c

80≤x<90

a

0.24

90≤x≤100

b

0.06

合計(jì)

1

根據(jù)以上信息解答下列問(wèn)題:

(1)統(tǒng)計(jì)表中c的值為;樣本成績(jī)的中位數(shù)落在分?jǐn)?shù)段中;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若80分以上(含80分)的作品將被組織展評(píng),試估計(jì)全校被展評(píng)作品數(shù)量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國(guó)古代數(shù)學(xué)的驕傲,如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形,設(shè)直角三角形較長(zhǎng)直角邊長(zhǎng)為a,較短直角邊長(zhǎng)為b,若(a+b)2=21,大正方形的面積為13,則小正方形的面積為(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了“創(chuàng)建文明城市,建設(shè)美麗家園”,我市某社區(qū)將轄區(qū)內(nèi)的一塊面積為1000m2的空地進(jìn)行綠化,一部分種草,剩余部分栽花,設(shè)種草部分的面積為x(m2),種草所需費(fèi)用y1(元)與x(m2)的函數(shù)關(guān)系式為 ,其圖象如圖所示:栽花所需費(fèi)用y2(元)與x(m2)的函數(shù)關(guān)系式為y2=﹣0.01x2﹣20x+30000(0≤x≤1000).
(1)請(qǐng)直接寫(xiě)出k1、k2和b的值;
(2)設(shè)這塊1000m2空地的綠化總費(fèi)用為W(元),請(qǐng)利用W與x的函數(shù)關(guān)系式,求出綠化總費(fèi)用W的最大值;
(3)若種草部分的面積不少于700m2 , 栽花部分的面積不少于100m2 , 請(qǐng)求出綠化總費(fèi)用W的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,M為BC邊上一點(diǎn),連接AM,過(guò)點(diǎn)D作DE⊥AM,垂足為E.若DE=DC=1,AE=2EM,則BM的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C在線段AB上,△DAC和△DBE都是等邊三角形.
(1)求證:△DAB≌△DCE;
(2)BD、CE交于點(diǎn)F,若∠ADB為鈍角,在不添加任何輔助線的情況下,直接寫(xiě)出圖中所有不是60°且相等的銳角.

查看答案和解析>>

同步練習(xí)冊(cè)答案