【題目】某公司向甲、乙兩所中學送水,每次送往甲中學7600升,乙中學4000升.已知人均送水量相同,甲中學師生人數(shù)是乙中學的2倍少20人.

(1)求這兩所中學師生人數(shù)分別是多少;

(2)若送瓶裝水,價格為1/升;若用消防車送飲用水,不需購買,但需配送水塔,容量500升的水塔售價為520/個,其他費用不計.請問這次乙中學用瓶裝水花費少還是飲用消防車送水花費少?

【答案】(1) 甲中學有師生380人,乙中學有師生200;(2)這次乙中學飲用瓶裝水花費少.

【解析】1)此題首先依據(jù)題意得出等量關系即人均送水量相同從而列出方程為=,解出方程檢驗并作答.

2分別算出送瓶裝水的費用和送飲用泉水的費用,即可得出結論

1)設乙中學有師生x,則甲中學有師生(2x20)人,依題意

=

解這個方程,x=200

經(jīng)檢驗x=200是原方程的解,2x20=380

答:甲中學有師生380,乙中學有師生200

2乙中學飲用瓶裝水的費用為4000×1=4000(元)

飲用消防車送水的費用為4000÷500×520=4160(元),40004160,

所以,這次乙中學飲用瓶裝水花費少.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】周末,小明和爸爸在400米的環(huán)形跑道上騎車鍛煉,他們在同一地點沿著同一方向同時出發(fā),騎行結束后兩人有如下對話:

(1)他們的對話內容,求小明和爸爸的騎行速度,

(2)一次追上小明后,在第二次相遇前,再經(jīng)過多少分鐘,小明和爸爸相距50m?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,E是BC的中點,以點A為中心,把△ABE逆時針旋轉90°,設點E的對應點為F.

(1)畫出旋轉后的三角形.
(2)在(1)的條件下,
①求EF的長;
②求點E經(jīng)過的路徑弧EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC∠A=36°,BDCE分別是∠ABC、∠BCD的角平分線,則圖中的等腰三角形有( 。

A. 5B. 4C. 3D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,EAB的中點,連接DE并延長交CB的延長線于點F,點G在邊BC上,且∠GDF=∠ADF.連接EG,判斷EGDF的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,DBC的中點,過D點的直線GFACF,交AC的平行線BGG點,DE⊥DF,交AB于點E,連結EGEF

1)求證:BGCF

2)請你判斷BE+CFEF的大小關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DEBC,DE=EF,AE=EC,則圖中的四邊形ADCF__,四邊形BCFD__.(選填平行四邊形、矩形、菱形、正方形”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】萬州某運輸公司的一艘輪船在長江上航行,往返于萬州、朝天門兩地。假設輪船在靜水中的速度不變,長江的水流速度不變,該輪船從萬州出發(fā),逆水航行到朝天門,停留一段時間(卸貨、裝貨、加燃料等,又順水航行返回萬州,若該輪船從萬州出發(fā)后所用時間為x(小時),輪船距萬州的距離為y(千米),則下列各圖中,能反映y與x之間函數(shù)關系的圖象大致是【 】

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣2(m+1)x+m(m+2)
(1)求證:無論m為任何實數(shù),該函數(shù)圖象與x軸兩個交點之間的距離為定值.
(2)若該函數(shù)圖象的對稱軸為直線x=2,試求二次函數(shù)的最小值.

查看答案和解析>>

同步練習冊答案