【題目】如圖,正方形ABCD的邊長為2,E是BC的中點,以點A為中心,把△ABE逆時針旋轉(zhuǎn)90°,設(shè)點E的對應(yīng)點為F.
(1)畫出旋轉(zhuǎn)后的三角形.
(2)在(1)的條件下,
①求EF的長;
②求點E經(jīng)過的路徑弧EF的長.
【答案】
(1)解:如圖1所示.△ADF為所求
(2)解:①如圖2,依題意,AE=AF,∠EAF=90°.
在Rt△ABE中,
∵AB=2,BE= BC=1,
∴AE= .
在Rt△AEF中,
EF= = = ;
②∵∠EAF=90°,AE=AF= ,
∴l(xiāng)= = π,
∴弧EF的長為 π
【解析】(1)根據(jù)圖形旋轉(zhuǎn)的性質(zhì)畫出旋轉(zhuǎn)后的圖形即可;(2)①先根據(jù)勾股定理求出AE的長,由圖形旋轉(zhuǎn)的性質(zhì)得出AF的長,根據(jù)勾股定理即可得出EF的長;②直接根據(jù)弧長公式即可得出結(jié)論.
【考點精析】通過靈活運用勾股定理的概念和弧長計算公式,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;若設(shè)⊙O半徑為R,n°的圓心角所對的弧長為l,則l=nπr/180;注意:在應(yīng)用弧長公式進(jìn)行計算時,要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】飲水機接通電源就進(jìn)入自動程序,開機加熱時每分鐘上升10℃,加熱到100℃,停止加熱,水溫開始下降,此時水溫y(℃)與開機后用時x(min)成反比例關(guān)系.直至水溫降至20℃時自動開機加熱,重復(fù)上述自動程序.若在水溫為20℃時,接通電源后,水溫y(℃)和時間x(min)的關(guān)系如圖,
(1) 分別求出直線及雙曲線的解析式.
(2) 學(xué)生在每次溫度升降過程中能喝到50℃以上水的時間有多長?
(3) 若某天上午六點飲水機自動接通電源,問學(xué)生上午第一節(jié)下課時(8:15)能喝到超過50℃的水嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點A表示的數(shù)為6,B是數(shù)軸上一點,且AB=10,動點P從點A出發(fā),以每秒6個單位長度的速度沿數(shù)軸向左勻速運動,設(shè)運動時間為t(t>0)秒,
(1)寫出數(shù)軸上點B所表示的數(shù) ;
(2)點P所表示的數(shù) ;(用含t的代數(shù)式表示);
(3)M是AP的中點,N為PB的中點,點P在運動的過程中,線段MN的長度是否發(fā)生變化?若變化,說明理由;若不變,請你畫出圖形,并求出線段MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B分別為數(shù)軸上的兩點,A點對應(yīng)的數(shù)為﹣20,B點對應(yīng)的數(shù)為100.
(1)請寫出與A,B兩點距離相等的點M所對應(yīng)的數(shù) .
(2)現(xiàn)有一只電子螞蟻P從B點出發(fā),以6單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以4單位/秒的速度向右運動,x秒后兩只電子螞蟻在數(shù)軸上的C點相遇,請列方程求出x,并指出點C表示的數(shù).
(3)若當(dāng)電子螞蟻P從B點出發(fā)時,以6單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以4單位/秒的速度也向左運動,y秒后兩只電子螞蟻在數(shù)軸上的D點相遇,請列方程求出y并指出點D表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在求1+2+22+23+24+25+26的值時,小明發(fā)現(xiàn):從第二個加數(shù)起每一個加數(shù)都是前一個加數(shù)的2倍,于是他設(shè):S=1+2+22+23+24+25+26①然后在①式的兩邊都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.
(1)求1+3+32+33+34+35+36的值;
(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平整的地面上,由若干個完全相同的棱長為 10 cm 的小正方體堆成一個幾何體,如圖 所示.
(1)這個幾何體由多少個小正方體組成?請畫出這個幾何體的三視圖.
(2)如果在這個幾何體的表面(不包括底面)噴上黃色的漆,則在所有的小正方體中,有多少個只有一個面是黃色?有多少個只有兩個面是黃色?有多少個只有三個面是黃色?
(3)假設(shè)現(xiàn)在你手里還有一些相同的小正方體,保持這個幾何體的主視圖、俯視圖形狀 不變,最多可以再添加幾個小正方體?這時如果要重新給這個幾何體表面(不包括底面) 噴上紅色的漆,需要噴漆的面積比原幾何體增加了還是減少了?增加或減少的面積是 多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的三條角平分線相交于點I,過點I作DI⊥IC,交AC于點D.
(1)如圖①,求證:∠AIB=∠ADI;
(2)如圖②,延長BI,交外角∠ACE的平分線于點F.
①判斷DI與CF的位置關(guān)系,并說明理由;
②若∠BAC=70°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司向甲、乙兩所中學(xué)送水,每次送往甲中學(xué)7600升,乙中學(xué)4000升.已知人均送水量相同,甲中學(xué)師生人數(shù)是乙中學(xué)的2倍少20人.
(1)求這兩所中學(xué)師生人數(shù)分別是多少;
(2)若送瓶裝水,價格為1元/升;若用消防車送飲用水,不需購買,但需配送水塔,容量500升的水塔售價為520元/個,其他費用不計.請問這次乙中學(xué)用瓶裝水花費少還是飲用消防車送水花費少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著手機的普及,微信一種聊天軟件的興起,許多人抓住這種機會,做起了“微商”,很多農(nóng)產(chǎn)品也改變了原來的銷售模式,實行了網(wǎng)上銷售,這不剛大學(xué)畢業(yè)的小明把自家的冬棗產(chǎn)品也放到了網(wǎng)上,他原計劃每天賣100斤冬棗,但由于種種原因,實際每天的銷售量與計劃量相比有出入,下表是某周的銷售情況超額記為正,不足記為負(fù)單位:斤;
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
與計劃量的差值 |
|
|
|
|
|
|
|
(1)根據(jù)記錄的數(shù)據(jù)可知前三天共賣出 ______ 斤;
(2)根據(jù)記錄的數(shù)據(jù)可知銷售量最多的一天比銷售量最少的一天多銷售 ______ 斤;
(3)本周實際銷售總量達(dá)到了計劃數(shù)量沒有?
(4)若冬季每斤按8元出售,每斤冬棗的運費平均3元,那么小明本周一共收入多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com