如圖,以△ABC的BC邊上一點O為圓心的圓,經(jīng)過A,B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連接AD交BC于F,若AC=FC.

(1)求證:AC是⊙O的切線:

(2)若BF=8,DF=,求⊙O的半徑r.

 

【答案】

解:(1)證明:連接OA、OD,

∵D為弧BE的中點,∴OD⊥BC。

∴∠DOF=90°!唷螪+∠OFD=90°。

∵AC=FC,OA=OD,

∴∠CAF=∠CFA,∠OAD=∠D。

∵∠CFA=∠OFD,∴∠OAD+∠CAF=90°。

∴OA⊥AC。

∵OA為半徑,∴AC是⊙O切線。

(2)當F在半徑OE上時,∵⊙O半徑是r,∴OD=r,OF=8﹣r。

在Rt△DOF中,r2+(8﹣r)2=(2,解得r=或r=(舍去);

當F在半徑OB上時,∵⊙O半徑是r,∴OD=r,OF=r﹣8。

在Rt△DOF中,r2+(r﹣8)2=(2,解得r=或r=(舍去)。

∴⊙O的半徑r為

【考點】垂徑定理,直角三角形兩銳角的關(guān)系,等腰三角形的性質(zhì),切線的判定,勾股定理。

【解析】

試題分析:(1)連接OA、OD,求出∠D+∠OFD=90°,推出∠CAF=∠CFA,∠OAD=∠D,求∠OAD+∠CAF=90°,根據(jù)切線的判定推出即可。

(2)OD=r,OF=8﹣r,在Rt△DOF中根據(jù)勾股定理得出方程r2+(8﹣r)2=(2,求出即可。

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

26、如圖,以△ABC的邊AB、AC為邊的等邊三角ABD和等邊三角形ACE,四邊形ADFE是平行四邊形.
(1)當∠BAC滿足什么條件時,四邊形ADFE是矩形;
(2)當∠BAC滿足什么條件時,平行四邊形ADFE不存在;
(3)當△ABC分別滿足什么條件時,平行四邊形ADFE是菱形,正方形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

12、如圖,以△ABC的三邊為邊,在BC的同側(cè)作三個等邊△ABD、△BEC、△ACF.
(1)判斷四邊形ADEF的形狀,并證明你的結(jié)論;
(2)當△ABC滿足什么條件時,四邊形ADEF是菱形?是矩形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、如圖,以△ABC的邊AB為直徑作⊙O交BC于D,過D作⊙O的切線交AC于E,要使得DE⊥AC,則△ABC的邊必須滿足的條件是
AC=AB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•玉林)如圖,以△ABC的BC邊上一點O為圓心的圓,經(jīng)過A,B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連接AD交BC于F,若AC=FC.
(1)求證:AC是⊙O的切線:
(2)若BF=8,DF=
40
,求⊙O的半徑r.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,以△ABC的三邊為邊在BC的同一側(cè)分別作三個等邊三角形,即△ABD、△BCE、△ACF

(1)證明四邊形ADEF是平行四邊形.
(2)當△ABC滿足條件
∠BAC=150°
∠BAC=150°
時,四邊形ADEF為矩形.
(3)當△ABC滿足條件
∠BAC=60°
∠BAC=60°
時,四邊形ADEF不存在.
(4)當△ABC滿足條件
AB=AC且∠BAC≠60°(或AB=AC≠BC)
AB=AC且∠BAC≠60°(或AB=AC≠BC)
時,四邊形ADEF為菱形.

查看答案和解析>>

同步練習冊答案