【題目】(1)如圖①,AD是△ABC的中線.△ABD與△ACD的面積有怎樣的數(shù)量關(guān)系?為什么?
(2)若三角形的面積記為S,例如:△ABC的面積記為S△ABC.如圖②,已知S△ABC=1.△ABC的中線AD、CE相交于點(diǎn)O,求四邊形BDOE的面積.
小華利用(1)的結(jié)論,解決了上述問題,解法如下:
連接BO,設(shè)S△BEO=x,S△BDO=y,由(1)結(jié)論可得:S△BCE=S△BAD=S△ABC=,S△BCO=2S△BDO=2y,S△BAO=2S△BEO=2x.則有即所以x+y=.即四邊形BDOE面積為.
請(qǐng)仿照上面的方法,解決下列問題:
①如圖③,已知S△ABC=1.D、E是BC邊上的三等分點(diǎn),F、G是AB邊上的三等分點(diǎn),AD、CF交于點(diǎn)O,求四邊形BDOF的面積.
②如圖④,已知S△ABC=1.D、E、F是BC邊上的四等分點(diǎn),G、H、I是AB邊上的四等分點(diǎn),AD、CG交于點(diǎn)O,則四邊形BDOG的面積為 .
【答案】(1)S△ABD=S△ACD;(2)①,②
【解析】
(1)利用等底等高的三角形面積相等求解即可;
(2)①連接BO,設(shè)S△BDO=x,S△BGO=y,根據(jù)三角形間的面積關(guān)系列出方程組求解即可;
②連接BO,設(shè)S△BDO=x,S△BGO=y,根據(jù)三角形間的面積關(guān)系列出方程組求解即可.
解:(1)S△ABD=S△ACD.
∵AD是△ABC的中線,
∴BD=CD,
又∵△ABD與△ACD高相等,
∴S△ABD=S△ACD.
(2)①如圖3,連接BO,設(shè)S△BFO=x,S△BDO=y,
S△BCF=S△ABD=S△ABC=
S△BCO=3S△BDO=3y,
S△BAO=3S△BFO=3x.
則有: ,即
所以x+y=,即四邊形BDOF的面積為;
②如圖,連接BO,設(shè)S△BDO=x,S△BGO=y,
S△BCG=S△ABD=S△ABC=,
S△BCO=4S△BDO=4x,
S△BAO=4S△BGO=4y.
則有: ,即
所以x+y= ,即四邊形BDOG的面積為,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠C=90°,BE,DF分別是∠ABC,∠ADC的平分線.
(1)∠1與∠2有什么關(guān)系,為什么?
(2)BE與DF有什么關(guān)系?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A,B,C的坐標(biāo)分別為A(a,3),B(b,6),C(m+6,1),且a,b滿足
(1)請(qǐng)用含m的式子表示A,B兩點(diǎn)的坐標(biāo);
(2)如圖,點(diǎn)A在第二象限,點(diǎn)B在第一象限,連接A、B、C、O四點(diǎn);
①若點(diǎn)B到y軸的距離不小于點(diǎn)A到y軸距離的2倍,試求m的取值范圍;
②若三角形AOC的面積等于三角形ABC面積的,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線MN∥PQ,直線AB分別與MN,PQ相交于點(diǎn)A,B.小宇同學(xué)利用尺規(guī)按以下步驟作圖:①以點(diǎn)A為圓心,以任意長為半徑作弧交AN于點(diǎn)C,交AB于點(diǎn)D;②分別以C,D為圓心,以大于CD長為半徑作弧,兩弧在∠NAB內(nèi)交于點(diǎn)E;③作射線AE交PQ于點(diǎn)F.若AB=2,∠ABP=60°,則線段AF的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“優(yōu)秀傳統(tǒng)文化進(jìn)校園”活動(dòng)中,學(xué)校計(jì)劃每周二下午第三節(jié)課時(shí)間開展此項(xiàng)活動(dòng),擬開展活動(dòng)項(xiàng)目為:剪紙,武術(shù),書法,器樂,要求七年級(jí)學(xué)生人人參加,并且每人只能參加其中一項(xiàng)活動(dòng).教務(wù)處在該校七年級(jí)學(xué)生中隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查,并對(duì)此進(jìn)行統(tǒng)計(jì),繪制了如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(均不完整).
請(qǐng)解答下列問題:
(1)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(2)在參加“剪紙”活動(dòng)項(xiàng)目的學(xué)生中,男生所占的百分比是多少?
(3)若該校七年級(jí)學(xué)生共有500人,請(qǐng)估計(jì)其中參加“書法”項(xiàng)目活動(dòng)的有多少人?
(4)學(xué)校教務(wù)處要從這些被調(diào)查的女生中,隨機(jī)抽取一人了解具體情況,那么正好抽到參加“器樂”活動(dòng)項(xiàng)目的女生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,,將沿直線向右平移2個(gè)單位得到,連接,則下列結(jié)論:①,;②;③四邊形的周長是16;④S四邊形ABEO=S四邊形CFDO其中結(jié)論正確的個(gè)數(shù)有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖在△ABC中,AD、BE分別是BC,AC邊上的高,AD、BE交于H,DA=DB,BH=AC,點(diǎn)F為BH的中點(diǎn),∠ABE=15°.
(1)求證:△ADC≌△BDH
(2)求證:DC=DF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,以B為圓心,BC長為半徑畫弧,分別交AC、AB于D、E兩點(diǎn),并連接BD、DE,若∠A=30°,AB=AC,則∠BDE=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD中,E是AD的中點(diǎn),以點(diǎn)E直角頂點(diǎn)的直角三角形EFG的兩邊EF,EG分別過點(diǎn)B,C,∠F=30°.
(1)求證:BE=CE
(2)將△EFG繞點(diǎn)E按順時(shí)針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到EF與AD重合時(shí)停止轉(zhuǎn)動(dòng).若EF,EG分別與AB,BC相交于點(diǎn)M,N.(如圖2)
①求證:△BEM≌△CEN;
②若AB=2,求△BMN面積的最大值;
③當(dāng)旋轉(zhuǎn)停止時(shí),點(diǎn)B恰好在FG上(如圖3),求sin∠EBG的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com